
大数据应用:落地才能开花
数据资源,在未来社会将扮演与矿石能源同等重要的角色。如同瓦特的蒸汽机、爱迪生的白炽灯一样,对当下及未来生产、生活模式发生颠覆性影响。而当下如火如荼的大数据核心产业,仍面临诸多挑战,需要经历复杂过程。这不禁让人想起:19世纪初,英国屡次发生工人捣毁生产机器的事件;晚清时期,技术先进的铁路、蒸汽机车被清朝君臣视为“奇技淫巧”,破坏风水。人们接受新生事物,从认知、接受,到使用、建立经营模式,非一朝一夕之功,需从业者谨慎面对,避免概念炒作,创新商业模式,让技术真正“落地“服务。就如同今日的中国机械驰名中外,高速铁路纵横南北,技术“落地”才能生根发芽。
“供给创造它自己的需求”,诞生于19世纪的萨伊定律提出,只要有供给,就会产生相匹配的需求,市场会自动出清。在大数据广泛应用的今天,这一破产于20世纪大萧条时期的理论似乎暗藏新含义。
当前,全球围绕大数据挖掘、采集、存储管理,正在形成一个生态圈,即大数据产业。在消费市场快速变化背景下,依靠大数据分析,市场供应者可精准对接需求,一定程度上,或许真的可以“出清”。
2015年9月,李克强总理签发《促进大数据发展行动纲要》,将大数据产业推向最高热度。2017年政府工作报告中提到,深入推进“互联网+”行动和国家大数据战略。并指出,加快大数据、云计算、物联网应用,以新技术新业态新模式,推动传统产业生产、管理和营销模式变革。2016年,全球大数据核心产业规模达到300亿美元。然而,在迅猛发展过程中,一些现象仍值得思考。
过热炒作的弊端
根据中国信息通信研究院测算:2015年,我国大数据核心产业市场规模达到115.9亿元,增速达38%,预计2016年达到168亿元,2017-2018年还将维持40%左右的高增长。一些大型企业,纷纷建立自己的数据分析团队。阿里巴巴董事局主席马云提出,未来的制造业不仅生产产品,未来的制造业制造出来的机器必须会思考,必须会说话,必须会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。“未来的制造业要的不是石油,它最大的能源是数据”。可是,高增长背后,一些现象透露出隐忧:
2017年初,高德地图公布的大数据分析结果引发争议。其发布的《2016年度中国主要城市交通分析报告》汽车用户画像指出,中高档车主驾驶“野蛮”,其中被看作最野蛮的是mini车主,凯迪拉克车主偏爱洗浴中心。瞬间,一石激起千层浪,不仅相关车主、车友会群起攻之,也引起部分汽车厂商关注。当事方表示,这份分析资料由高德地图交通大数据团队撰写,基于高德积累的海量交通出行数据,通过大数据挖掘计算所得。即便如此,数据来源、计算方法、数据用途都受到质疑。
同样困扰大数据应用的不仅是内容,更有过度的概念炒作、投资过热。2016年,数家大数据技术与应用服务商开始削减团队人数,其中一部分,即便经过多轮融资,但实际经营利润仍无法弥补成本或无法扩大营业规模,出现亏损。伴随而来的是投资削减:据统计,2016年,在大数据领域第三季度共发生投资案例801起,同比减少2.2%。就投资总额看,披露金额的727起投资案例共涉及投资金额1141亿元人民币,同比下降4.9%,较第二季度下降51.1%。投资项目同比降低三分之一。
短短数年时间,大数据分析的商业理念就已经遍布各个行业。而其真正能为产业革新作出的贡献以及产业本身生存状态仍值得商榷。
比计算方法更重要的是制定策略
二战时,英国空军请哥伦比亚大学统计学教授统计战机受损情况,以统计结果作为飞机加强改装的依据。受当时技术局限,飞机只能做部分加强。他们积累了很多数据,统计飞机所有受伤的弹孔位置。最后发现:机翼两端弹孔最多,人们认为应把加强钢板放在机翼,但教授却坚持认为,那些薄弱的部位,就是没有统计出来的地方,因为这些地方受伤的飞机根本没有飞回来。不管是原始的统计方式,还是大数据广泛应用的当下,人们进行统计分析,会忽略很多样本,甚至策略制定发生偏差。如此,再精确的数据统计,也将无济于事。
中国信息通信研究院发布的《大数据白皮书(2016)》指出:我国大数据产业发展已具备一定基础,但要实现从“数据大国”向“数据强国”转变,还面临诸多挑战:一是对数据资源及其价值认识不足。二是技术创新与支撑能力不够。三是数据资源建设和应用水平不高。四是信息安全和数据管理体系尚未建立。五是人才队伍建设亟须加强。在数据资源建设和应用层面。白皮书提出:“用户普遍不重视数据资源的建设,即使有数据意识的机构,大多只重视数据的简单存储,很少针对后续应用需求进行加工整理。数据资源普遍存在质量差,标准规范缺乏,管理能力弱等现象,跨部门、跨行业的数据共享仍不顺畅,有价值的公共信息资源和商业数据开放程度低。数据价值难以被有效挖掘利用,大数据应用整体上处于起步阶段,潜力远未释放。”
在金融应用领域,91金融CEO许泽玮认为,不能过分依赖数据,要设立风险委员会,使专业人员的经验与数据统计相结合。同时,企业一定要具有足够的数据处理能力,同时要确保安全。“在检测防控风险方面,需采用线上和线下相结合的风险管理体系,包括基于大数据的线上征信和风控模型,以及传统的线下调查和贷后管理。”许泽玮介绍,建立具备丰富风控经验的从业团队,基于线上的大数据匹配,严格筛选借款人,确保他们有稳定的企业和还款能力,此外,借款人借款金额必须在抵押物评估值的70%以内,而且借款期限不得超过6个月。5位风控委员会委员均投票通过,则可以借出,如有一人不同意,则此项目作废。在很多行业愈发依赖大数据的当下,这些人工程序和经验愈发重要。
现在,公众对“大数据”已有基本认知,各种大数据的案例故事广为流传。但在当下,概念性的故事,未必能带来真正效果。人们需要的是,把停留在“讲故事”层面的内容深挖、落地,变成真正可行,低成本高效率的商业模式,让当下的概念在应用场景中发挥真正价值。
用数据解决实际问题
解决大数据应用的痛点,要解决使用者的大数据认知,更要实现大数据应用“落地服务”。
多数企业需要的不是数据本身,而是用数据解决实际问题。不是每个企业经营者都需要具备数据分析系统,但他们都希望大数据带来收益并节约成本。能够给企业带来价值的大数据“落地服务”,才有可能被企业接受。避免炒作、制定策略、落地服务是决定大数据核心产业长足发展的关键。
就金融行业而言,大数据主要业务应用于企业风险管理、信用评估、借贷、保险、理财、证券分析等。在这些领域,可以通过获取、关联和分析更多维度、更深层次的数据,通过不断发展的大数据处理技术得以更好、更快、更准确的实现,更多的金融企业利用大数据技术整合来自互联网等渠道的外部数据,从而使得原来不可担保的信贷可以担保,不可保险的风险可以保险。 《大数据白皮书(2016)》披露:中信银行信用卡中心从2010年开始引入大数据分析解决方案,为企业中心提供了统一的客户视图。借助客户统一视图,可以从交易、服务、风险、权益等多层面获取和分析数据,对客户按照低、中、高价值来进行分类,根据银行整体经营策略积极地提供相应的个性化服务,在降低成本的同时大幅提升精准营销能力。
许泽玮介绍,他们通过自主研发搜索引擎,捕捉借款用户的网络行为轨迹,鼓励借款用户将账号与微博等社交网络账号关联,监测用户登录习惯,不断积累和健全用户行为因子,扩展并完善大数据风控模型。他说,完善的用户数据主要有两大作用,一方面是为了更好地防范金融风险,另一方面则是为了进一步完善用户画像,实现精细化运营。让数据真正服务于业务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15