京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度揭秘:大数据时代企业卖技术还是卖数据
大数据技术的热度这几年一直在上升,现在我们在谈论大数据的时候已经不再仅仅局限于炒作大数据的概念了,更多的是聚焦在一些大数据的具体应用上,作为企业用户来讲,现在也已经开始有越来越多的企业领导和IT管理者逐渐了解大数据同自身业务之间的联系。
我们都知道,当今的企业级市场,不管是渠道市场还是行业市场,数据对于企业来说都存在着巨大的价值,而作为数据资源的核心组成部分,大数据已经成为了很多企业愿意买单的“产品”。其实企业在购买大数据服务的原因很简单,就是利用大数据的技术和应用帮助企业进行开源节流,在解决自身业务需求和问题的基础之上还能够大大降低企业的总体IT投入成本。大数据本身其实是无法帮助企业创造价值的,如何依靠技术的创新,从海量数据当中去挖掘出价值,从而让数据在真正意义上能够发挥作用,这才是最关键的。
450亿美金市场,聚焦硬件和技术层
没错,如此庞大的金额数据正是大数据技术带给我们的“礼物”。根据全球权威市场调查机构的研究结果显示,当今全球大数据的市场规模已经达到了452亿美金,在很多细分领域以及行业解决方案领域当中,其市场规模也占到了226.5亿美金。
对于国内市场来说,大数据的资金投入目前还集中在硬件层和技术层当中,对于一些具体的大数据应用角度的投入力度还有待加强,也有专家表示,大数据当中的应用层在未来是潜力巨大的。
当前的大数据产业大致可以分为三层,分别是基础平台、通用技术和行业应用,在大数据应用这个细分市场,最大两类玩家是大型互联网企业和大型集成商,他们的实力远远超过市面上这些做大数据应用的初创公司。
大型集成商主要是指华为、浪潮这些传统IT巨头,他们的传统业务是为大型企业提供硬件设备,在这过程中积累了大量数据。当他们服务对象的需求发生变化,增加大数据领域预算时,他们开始转型,积极开展大数据业务。
大型集成商还可以细分成两类,一类是华为这种自身技术实力很强的公司,他们以单兵作战为主;另一类是一些技术实力较弱,以搬箱子为主的集成商,这些公司一般会选择与大数据公司合作,填补其技术短板。
大数据传统行业应用方向
我们都知道,我国现在正在大力发展信息化,在推动信息化的过程当中,对于像工业、农业这样信息化水平相对落后的行业来说,需要从根本上打好基础,对于业务数据的采集、存储以及数据应用等方面,都需要去建立起一套完善的技术和服务体系。
大数据在金融领域的应用主要有以下三类:精准营销,风险控制以及精细化运营。将金融机构的客户打上不同的数据标签,形成个人和企业用户画像,再根据不同业务需求,甄别出目标客户群体。精准营销主要包括个性化营销、存量用户管理、挖掘潜力客户;风险控制包括个人及企业级信用评估、欺诈交易识别;精细化运营包括产品优化、市场和渠道分析、舆情分析等。
大数据在零售领域的应用与金融领域类似,依然围绕着精准营销、渠道管理、产品优化、市场定位等方面。值得注意的是,金融领域主要关注个体数据应用,而零售领域还关注统计数据应用,即大数据市场调查报告,了解消费者喜好,明确产品市场定位。
编辑的话
对于传统行业来说,大数据技术的深度应用能够快速推动信息化领域的发展,对于新兴产业来说,大数据技术的融入不仅能够带动新产业的融合,同时在企业级市场当中,对于产品化、技术创新等方面大数据也将发挥着重要作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16