京公网安备 11010802034615号
经营许可证编号:京B2-20210330
将基因组数据分类并写出文件,python,awk,R data.table速度PK
由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比。
首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S,
1 #!/usr/bin/sh
2 function main()
3 {
4 start_tm=date
5 start_h=`$start_tm +%H`
6 start_m=`$start_tm +%M`
7 start_s=`$start_tm +%S`
8 awk -F $sep '{print $1","$2","$3 >> "'"$inputfile"'""_"$1}' $inputfile
9 end_tm=date
10 end_h=`$end_tm +%H`
11 end_m=`$end_tm +%M`
12 end_s=`$end_tm +%S`
13 use_tm=`echo $end_h $start_h $end_m $start_m $end_s $start_s | awk '{ print ($1 - $2),"h",($3-$4),"m",($5-$6),"s"}'`
14 echo "Finished in "$use_tm
15 }
16
17
18 if [ $# == 2 ]; then
19 sep=$1
20 inputfile=$2
21 main
22 else
23 echo "usage: SplitChr.sh sep inputfile"
24 echo "eg: SplitChr.sh , test.csv"
25 fi
接下来是用python,python语言简单,书写方便。因此很快就实现了程序,同样逐行处理,比awk添加了一点细节,只挑出需要的染色体。用时19.9秒。
1 #!/usr/bin/python
2 import sys
3 import time
4 def main():
5 if len(sys.argv)!=3:
6 print "usage : SplitChr sep inputfile eg: SplitChr ',' test.txt"
7 exit()
8 sep=sys.argv[1]
9 filename=sys.argv[2]
10 f=open(filename,'r')
11 header=f.readline()
12 if len(header.split(sep))<2:
13 print "The sep can't be recongnized !"
14 exit()
15 chrLst=range(1,23)
16 chrLst.extend(["X","Y"])
17 chrLst=["chr"+str(i) for i in chrLst]
18 outputdic={}
19 for chrI in chrLst:
20 output=filename+"_"+chrI
21 outputdic[chrI]=open(output,'w')
22 outputdic[chrI].write(header)
23 for eachline in f:
24 tmpLst=eachline.strip().split(sep)
25 tmpChr=tmpLst[0]
26 if tmpChr in chrLst:
27 outputdic[tmpChr].write(eachline)
28 end=time.clock()
29 print "read: %f s" % (end - start)
30
31
32
33 if __name__=='__main__':
34 start=time.clock()
35 main()
最后用R语言data.table包进行处理,data.table是data.frame的高级版,在速度上作了很大的改进,但是和awk和python相比,具有优势吗?
1 #!/usr/bin/Rscript
2 library(data.table)
3 main <- function(filename,sep){
4 started.at <- proc.time()
5 arg <- commandArgs(T)
6 sep <- arg[1]
7 inputfile <- arg[2]
8 dt <- fread(filename,sep=sep,header=T)
9 chrLst <- lapply(c(1:22,"X","Y"),function(x)paste("chr",x,sep=""))
10 for (chrI in chrLst){
11 outputfile <- paste(filename,"_",chrI,sep="")
12 fwrite(dt[.(chrI),,on=.(chr)],file=outputfile,sep=sep)
13 }
14 cat ("Finished in",timetaken(started.at),"\n")
15 }
16
17 arg <- commandArgs(T)
18 if (length(arg)==2){
19 sep <- arg[1]
20 filename <- arg[2]
21 main(filename,sep)
22 }else{
23 cat("usage: SplitChr.R sep inputfile eg: SplitChr.R '\\t' test.csv","\n")
24 }
用时10.6秒,发现刚刚读完数据,立刻就处理和写出完毕,处理和写出时间非常短,因此总体用时较短。
总结
虽然都是逐行处理,但由上述结果猜测awk内部运行并没有python快,但awk书写一行代码搞定,书写速度快,至于python比data.table慢,猜测原因是R data.table用C语言写,并且运用多线程写出,hash读取,传地址各种方式优化速度的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22