
单样本t检验的spss实现
直接来看一个例子:
常规种植条件下某玉米品的平均穗重为 300g 。现在采用根外施肥(即将肥料制成液体养分,喷洒到玉米的叶面)后,调查了 20 个玉米棒 ,其穗重如表 1所示。问:改用叶面施肥后,穗重是 否显著增加了 ?(置信度为 95% 或者显著水平 α=0.05)
表1 20个玉米穗的重量(单位:g)
这是一个单尾测验,原假设和备择假设是:
原假设(无效假设):叶面施肥没有增产效果。
备择假设 :叶面施肥有增产效果
在SPSS中不能直接进行单尾测验,但是SPSS却可以输出t统计量的双侧检验相伴概率sig,将得到的相伴概率除以2,即得到单尾测验的相伴概率。将这个相伴概率与0.05进行比较,小于0.05则拒绝原假设。
单样本t检验的SPSS操作
首先将数据导入或者录入到spss中,然后依次 选择分析 <均值比较 <单样本t检验. 出现如下图所示的窗口。
将要检验的变量“穗重”选入到“检验变量”窗口,同时输入给定的用于对比的那个值,此处为常规种植条件下的穗重均值300.设置完毕后,点击确定。输出结果中的描述性统计这里就不讨论了,直接看t检验的结果。
你可以找一本统计学教材,对着t分布表,查看一下自由度为19,显著水平为0.05时,的双侧检验的t临界值,将这里得到的t值与那个临界值进行比较,如果这里的t值大于那个临界值,则拒绝原假设,这和p值小于0.05是等价的。
如下图所示,这里得到的双侧t检验相伴概率为0.006,那么单侧相伴概率为0.003,无论是双侧检验还是单侧检验,都可以拒绝原假设,考虑到叶面施肥后的穗重均值为300+7=307,因此认为叶面施肥能够极显著地增加穗重。
双侧检验与单侧检验
下面两张图片中,第一个图中黑色区域表示的是单侧检验的拒绝域。第二个图表示的双侧检验的拒绝域。同样是0.05的置信水平,双侧检验与单侧检验,临界值是不同的,因为黑色区域的位置不同,尽管它们的总面积是相等的。
进行大端单尾测验时,当计算得到的t统计量大于黑色区域与白色区域的临界位置对应的横轴值时,拒绝原假设。而这时,相伴概率也一定小于0.05,因此使用相伴概率和t临界值来决定原假设的取舍,原理本质上是一样的。只不过教材上进行案例讲解时,一般使用临界值,因为相伴概率计算困难。而统计软件一般直接给出相伴概率。(相伴概率即为p值或者spss输出的sig值。)
进行双侧检验时,计算得到的统计量落入两边任意一块黑色区域,就应该拒绝原假设。或者相伴概率小于0.05时,拒绝原假设。(黑色区域表示的是一个很小的概率,这样小的概率,通过一次试验一般是不会发生,如果发生,说明原假设有问题,说明真实的分布不是原假设成立时的这个分布,均值要改变才行,均值改变了才能符合被检验的数据,所以被检验的数据的均值与原来那个设定值是不同的。)
单侧检验的R语言实现
如果你一定要直接得出单侧检验的结果,那也不是没有办法,R语言可以直接得出单侧检验的结果。给出代码如下:
t_test01.1<-read.csv(file="D:/单样本t检验_玉米.csv",header=TRUE)
#载入数据
t.test(t_test01.1$穗重,
alternative =c("greater"),
mu =300, paired =FALSE,
conf.level =0.95
) #进行单样本t检验
输出结果如下
OneSample t-test
data: t_test01.1$穗重
t=3.1239, df=19, p-value =0.002794
alternative hypothesis: true mean is greater than 300
95 percent confidence interval:
303.1254 Inf
sample estimates:
mean of x
307
得到 p-value =0.002794<0.05,拒绝原假设,选择备择假设:alternative hypothesis: true mean is greater than 300。(实际均值大于300)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28