京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代采集就是价值
大数据时代不可抗拒,应该是毋庸置疑的,但对于绝大多数企业大数据本身仅是一个空泛的概念,不仅难以参与更难于控制。几乎任何规模企业,每时每刻都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。这种感觉好像是守着金山却无从下手。大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是拥有大量的数据。
采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础。移动互联的发展催生了更为多样化的数据,同时包含结构化和非结构化的数据。在传统的企业中,被有效管理的数据都是以表格的形式保存在数据库中,所有的信息格式都一样,便于编程处理。而如今的海量数据中,包括各种各样的数据类型,最常见的普通文本、照片、视频等等,还有像位置信息、链接信息等XML类型的数据。这些数据很难通过传统的技术手段进行提炼和分析。这是绝大多企业面对大数据无所适从的主要原因。
同时行业大数据的应用不同于互联网,行业数据针对性强、关联性强,大数据应用复杂,跨度更大,跨部门,甚至跨行业需求更多。行业内的数据产生往往仅仅是因为一个特定的工作内容。以保险行业的移动查勘为例,通过移动查勘系统实现查勘人员的精确调度和各种外勤任务的工单接收、任务处理、现场勘查、信息采集、信息上报等需求,使得现场情况能及时处理,并将相关信息及时、准确地传递到后台系统,实现现场与后台人员的工作协同,保证工作流程不断点,从而使得各种现场问题得到准确、高效的解决。
这些查勘工作的背后是大量的位置信息、路段信息、车辆品牌、事故现场,甚至通过移动终端与身份证背夹结合可以读取车主的二代身份证信息。现在这些非结构化的数据对保险公司来来说仅仅是理赔依据,是可以提高理赔效率、减少骗保行为,但这绝对不是这些数据的全部价值。这些数据的背后还关联着用户的真实数据年龄、家庭、职业、收入、住所、厂牌型号、发动机号等等,这些数据甚至可以成为一个区域经济的晴雨表和社会中坚群体的情绪反应,未来的价值很难限量。所有这些数据的综合都将提供给用户更加个性化的客户体验,并通过这些新的沟通渠道、根据客户的习惯和表达态度,预测每个客户正在寻找什么。通过有效地管理大数据,可以用来加强客户关系、增加交叉销售和追加销售、以及对预测客户消费习惯和趋势的第一手洞察力。
绝大多数的企业现在还很难判断,到底哪些数据未来将成为资产,通过什么方式将数据提炼为现实收入。对于这一点即便是大数据服务企业也很难给出确定的答案。但有一点是肯定的,大数据时代,谁掌握了足够的数据,谁就有可能掌握未来,现在的数据采集就是将来的流动资产积累。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22