京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近一个同学找到我,希望我帮忙处理一份数据。那份数据是这样的:包含了3661行,第一行为各列的名称;包含8列,第一列为专利ID,其余7列为企业ID。
这份数据截图如下所示:
一、问题描述
需要做的数据处理是,求所有专利之间的关系矩阵,这里的关系指的是:当同一个企业同时申请了两个不同的专利,那么就认为这两个专利是有关系的。也就是说,当两个专利对应的企业的集合存在交集,则认为这两个专利存在关系。需要用矩阵表达这3660个专利的相互关系,有关系的两个专利交叉的位置置为1,否则置为0。
比如,上图中的编号4和编号5对应的企业的集合显然存在交集(交集为94和115),那么最终的关系矩阵第四行第五列和第五行第四列就应当用1表示。如果数据就是上边那样的,那么最终输出的关系矩阵就应该为:
二、问题解决
可能因为有段时间没有使用R了,加上之前又正好在用awk, grep, bash这些,所以一直想使用这些工具来解决。不过,想了很久,依然进展不大(主要是许久不用大多也忘了o(╯□╰)o)。后来看到压在桌面上的《R语言实战》,想到这里需要的输出是矩阵,而且主要的逻辑判定为是否有交集,这些不正是R大展拳脚的地方吗?!
于是先用伪代码将整个逻辑梳理了一遍,然后照着伪代码开始写R脚本。由于逻辑并不复杂,所以很快便写好了,代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
代码是很快写好了,不过执行速度确慢得难以忍受。无奈,找了个办法来缓解下焦急等待程序跑完的心情。到统计之都找到一个用在循环里显示进度条的程序改了改,终于好点了,也大概能算出来程序什么时候能跑完了。
包含显示进度条的程序代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
#创建进度条pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
Sys.sleep(0.00001)
setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
显示效果如下所示:
三、解决优化
虽然比之前好些了,但还是没有解决程序运行缓慢等待时间过长的问题。毫无疑问,这段程序肯定还有很大的优化空间,于是先读取少量的数据,试着使用Rprof分析了一下耗时情况,结果发现[.data.frame 这个操作的耗时占比较大,Google搜索后在 这里 找到了一个优化的方法,即对源数据读取到到data frame之后再拷贝到一个矩阵中做取行的值的操作。优化后的版本:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0data_matrix <- data.matrix(data_test[, -1]) #将数据拷贝到一个矩阵中
#创建进度条#pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data_matrix[i, ][!is.na(data_matrix[i, ])] #读取第i个专利对应的企业编号集合
company_set2 = data_matrix[j, ][!is.na(data_matrix[j, ])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
#Sys.sleep(0.00001)
#setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
在同样的机器环境下,改进后的程序只需要10min左右,而改进前的版本则需要将近7个小时,执行效率提高了40倍!
四、补充
在做这个数据处理过程中,值得记录的还包括:
R语言程序多个语句的时候记得带上{},用缩进控制是Python的做法;
源数据读取之前要简单校验下,防止包含异常值影响数据读取的结果(这里包含了#REF!,处理很久才发现);
在Excel中比较两份格式完全一样的数据是否相同,复制其中一份选择性粘贴“减”操作到另一份数据,选择数据区域看右下角显示的总和是否为0即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21