京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近一个同学找到我,希望我帮忙处理一份数据。那份数据是这样的:包含了3661行,第一行为各列的名称;包含8列,第一列为专利ID,其余7列为企业ID。
这份数据截图如下所示:
一、问题描述
需要做的数据处理是,求所有专利之间的关系矩阵,这里的关系指的是:当同一个企业同时申请了两个不同的专利,那么就认为这两个专利是有关系的。也就是说,当两个专利对应的企业的集合存在交集,则认为这两个专利存在关系。需要用矩阵表达这3660个专利的相互关系,有关系的两个专利交叉的位置置为1,否则置为0。
比如,上图中的编号4和编号5对应的企业的集合显然存在交集(交集为94和115),那么最终的关系矩阵第四行第五列和第五行第四列就应当用1表示。如果数据就是上边那样的,那么最终输出的关系矩阵就应该为:
二、问题解决
可能因为有段时间没有使用R了,加上之前又正好在用awk, grep, bash这些,所以一直想使用这些工具来解决。不过,想了很久,依然进展不大(主要是许久不用大多也忘了o(╯□╰)o)。后来看到压在桌面上的《R语言实战》,想到这里需要的输出是矩阵,而且主要的逻辑判定为是否有交集,这些不正是R大展拳脚的地方吗?!
于是先用伪代码将整个逻辑梳理了一遍,然后照着伪代码开始写R脚本。由于逻辑并不复杂,所以很快便写好了,代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
代码是很快写好了,不过执行速度确慢得难以忍受。无奈,找了个办法来缓解下焦急等待程序跑完的心情。到统计之都找到一个用在循环里显示进度条的程序改了改,终于好点了,也大概能算出来程序什么时候能跑完了。
包含显示进度条的程序代码如下:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0
#创建进度条pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data[i, -1][!is.na(data[i, -1])] #读取第i个专利对应的企业编号集合
company_set2 = data[j, -1][!is.na(data[j, -1])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
Sys.sleep(0.00001)
setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
显示效果如下所示:
三、解决优化
虽然比之前好些了,但还是没有解决程序运行缓慢等待时间过长的问题。毫无疑问,这段程序肯定还有很大的优化空间,于是先读取少量的数据,试着使用Rprof分析了一下耗时情况,结果发现[.data.frame 这个操作的耗时占比较大,Google搜索后在 这里 找到了一个优化的方法,即对源数据读取到到data frame之后再拷贝到一个矩阵中做取行的值的操作。优化后的版本:
data <- read.csv("C:\\Users\\dell\\Desktop\\data.csv") #读取数据
relation_matrix <- matrix(0, 3660, 3660) #创建一个与源数据行数相等的方阵,所有元素初始化为0data_matrix <- data.matrix(data_test[, -1]) #将数据拷贝到一个矩阵中
#创建进度条#pb <- txtProgressBar(min = 0, max = 3660, style = 3)
for (i in 1:3660)
for (j in 1:3660) {
company_set1 = data_matrix[i, ][!is.na(data_matrix[i, ])] #读取第i个专利对应的企业编号集合
company_set2 = data_matrix[j, ][!is.na(data_matrix[j, ])] #读取第j个专利对应的企业编号集合
#如果第i个专利和第j个专利对应的企业有相同的,则将对应位置置为1
if (i != j && length(intersect(company_set1, company_set2)) > 0)
relation_matrix[i, j] = 1
#设置进度条
#Sys.sleep(0.00001)
#setTxtProgressBar(pb, i)
}
write.csv(relation_matrix_test, "C:\\Users\\dell\\Desktop\\result.csv") #将关系矩阵写到文件中
在同样的机器环境下,改进后的程序只需要10min左右,而改进前的版本则需要将近7个小时,执行效率提高了40倍!
四、补充
在做这个数据处理过程中,值得记录的还包括:
R语言程序多个语句的时候记得带上{},用缩进控制是Python的做法;
源数据读取之前要简单校验下,防止包含异常值影响数据读取的结果(这里包含了#REF!,处理很久才发现);
在Excel中比较两份格式完全一样的数据是否相同,复制其中一份选择性粘贴“减”操作到另一份数据,选择数据区域看右下角显示的总和是否为0即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01