
用R语言做Venn(韦恩)图
首先介绍一下韦恩图(英语:Venn diagram) ,也叫做文氏图、温氏图、范氏图,这都一个意思。它是数学学科中分支集合论(或者类的理论)的一支,在不太严格的意义下用来表示集合(或类)的一种草图。Veen图是用于展示在不同的事物群组(集合)之间的数学或逻辑联系,尤其适合用来表示集合(或)类之间的“大致关系”,这“大致关系”就意味着它是不精确的。它也常常被用来帮助推导(或理解推导过程)关于集合运算(或类运算)的一些规律。
学过基础数学的都知道,咱们在学习集合论的时候,绝对画过韦恩图。用韦恩图来表征分组彼此之间的关系,观察公共区域以及每个分组的单独部分的情况。在生态学以及微生态研究中会用Venn图来展示几个分组之间关系的结果。
需要加载的软件包:colorfulVennPlot
数据准备形式如下:
我们现在想知道A、B、C这3个样地之间关于共同有的OTU以及独自具有的OTU数量的关系,每个样地有3个重复样。且看用R怎样做出你想要的结果:
setwd("C:/Rwork")#设置工作目录,我的工作目录设置为C盘Rwork文件夹
library(colorfulVennPlot )#加载colorfulVennPlot软件包,当然前提是你先下载好colorfulVennPlot软件包,如果没有的话,执行以下命令来下载:
install.packages("colorfulVennPlot ")#这一步是为了下载好colorfulVennPlot软件包
a<-read.csv("practice2", header=T)#读取要分析的数据,将其命名为a
rownames(a)<-a[,1]#将上一步的a数据矩阵的第一列提取出来,因为是你要分析的部分,命名为rownames(a),也可以是其他的名字
a<-a[,-1]#a数据的第一列作为表格的行名
head(a)#这一步不是必须的,这一步的意思是查看你新命名的a数据的前6行
grouped <- data.frame(A=rowSums(otu[,c(4,5,7)]),B=rowSums(otu[,c(1,2,6)]),C=rowSums(otu[,c(3,8,9)]))#我要详细解释这一命令的含义:根据我们之前给的practice2这个表格数据,以及我们将第一列数据作为行名。我们可以看到第4,5,7列是A样地组;1,2,6列是B样地组;3,8,9列是C样地组;我们将重复样进行求和,最终表格合并为3列A,B,C;且将其命名为grouped名字。
grouped#你可以查看合并之后的表格grouped
vennData<-createVennData(grouped,type="count",Cols=c("A","B","C"),Splits=c(0.1,0.1,0.1))#根据上述的一系列条件进行venn计算,设置颜色,类型,标签等等。
vennData#查看venn计算之后的结果
plotVenn(vennData$x,vennData$labels)#venn出图结果
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15