京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据基因是建设好政务大数据的奠基石
数据正在重塑当今时代资源观
未来如果一个组织未能掌握数据,不能运用数据,那么这个组织的竞争力将会越来越下降,不管这个组织是企业还是商业机构或者政府,对数据的治理能力决定未来新的竞争优势。数据治理能力正在成为组织竞争新优势。
数据正在重塑当今时代资源观。信息时代正在上演计算、连接、数据“三部曲”,在计算时代,我们关注的是信息的本地化处理,在连接时代关注的是关系价值,在数据时代关注的则是如何将数据资产化。能源和物质具有不可复制性,并且在使用过程中是不断消耗的过程,而信息资源在传递和应用的过程中是被不断赋予新的价值。数据时代的浪潮比想象的还要迅猛,互联网的核心是连接(信息层)和关系(价值层)构成的价值网络,大数据则可以更精准地反映、认识和掌握世界,数据资源的价值凸显,数据的多寡、好坏、开发利用能力的强弱已经直接影响组织运营和创新服务能力。人类社会正在进入数据时代,从关注网络、系统到注重数据,已成为当前信息化的重要视角与核心任务。
政务大数据发展的现状与挑战
数据成为当今信息化发展的重要视角和应用,但如果是假数据或者是质量不高的数据,那么就将会影响整个系统的运行效率。当前我国政务大数据发展主要存在以下问题:
第一是网络复杂,包括政务网,互联网,政务专网、外网等等;
第二是系统庞杂,一些大城市可能有几千个系统,各种格式、各种规模、各种标准等给管理带来巨大挑战;
第三是数据混杂,不同种类、不同颗粒度的数据混淆不清;
第四是数据体量越来越大,随着各种传感设备的使用增多,以及在业务系统中的应用增多,数据体量前所未有地飙升;
第五是需求多样,以前对数据的需求偏单一,现在越来越能感受到对数据的渴望,尤其是商业系统对数据的渴望。
从全球政府数据开放的角度来看,目前政府数据还存在四个方面问题:
第一是“少”,相比大型互联网平台而言,从政府数据开放平台的开放量来看还是太少;
第二是“乱”,数据管理方面格式规范混乱;
第三是“差”,数据质量过于粗糙,还没有达到提纯应用的标准;
第四是“死”,数据的流动性较差,没有流动就没有价值。因此亟待建立规范统一、运行高效、服务有力、保障到位的信息体系。
虽然城市大数据中心已经成为智慧城市发展的标配,但同时面临多方面的机遇与挑战。首先多个政策强调支持政务大数据中心建设,各地发展需求越来越多,技术的支撑能力越来越强。同时,政务大数据怎么应用,怎么管理,怎么发展等等数据价值的深度认识还不够,对政务大数据中心的组织能力、维护能力,管理能力等也面临困难。从挑战性方面来说,有来自城市为主的同行的挑战,有来自管理的挑战以及来自绩效要求的挑战。
对于政务大数据的管理,有很多要点和难点是并存的。
第一点就是如何确保数据质量,如果我们数据质量不能确保,基础不牢则可能“地动山摇”,比方说我们来自特征数据库得到人口的信息,如果差异很大的话,我们就会不知道哪些数据是准确的。如果有一块表的使我们很容易知道时间是多少,但是如果有两块表的时候,我们对时间的判断将会出现凌乱,如果有十块表的话你完全不知道时间是多少。所以各个系统的数据质量不能保证的话,数据用起来将会心惊胆战。
第二是数据的管理能力与管理方式,不能因循守旧依靠传统方式去管理政务大数据;
第三是如何建立有序的信息规则,实现数据有序共享与流动,大数据应用具有很多关联部门,存在着利益主体及相关者,如何构建好信息规则让利益相关者共建和共赢;
第四是数据如何实现按需流动,数据是一种极具价值的社会公共财富,是一种在使用过程中价值不会衰减而会增加的社会资源,数据因流动而产生价值,所以我们提倡“按需流动”,这也是国脉在电子政务领域的长期研究而首先提出的观点;第五是如何真正实现数据驱动服务。
重塑信息体系需从数据基因构建开始
关于政务大数据应用与管理尚有待深入思考的关键问题,包括底层数据如何确保一致?信息体系如何有效运营?数据价值如何有效开发?如何促进大数据产业发展?如何有力、有序、有效管理与服务?等等。而这些问题的背后则提出了元数据/数据元的标准化、信息规则的建立、数据应用的内生动力体系以及建立可持续发展的保障体系等要求,问题的核心是——基于数据开发基础上的大数据公共服务平台应如何建设与运营。传统的信息体系更多关注的是流程与业务逻辑,以网络和系统为主,而要从数据视角重构信息体系,需要关注数据的流动性和数据价值利用,其核心逻辑是遵从信息流动的内在逻辑,发挥数据最大价值,提供数据复用率,按照数据流动逻辑而非现实规则逻辑来重塑信息体系。
要重塑大数据时代的信息体系,构建健壮的信息体系依赖于优质的数据基因系统,数据体系的能力大小、发展前景和应用价值,从缔造数据基因开始。数据基因具有稳定性、可复制性、可剪辑性,保障内部信息的规则的一致性。优质的数据基因系统应有助于解决当前数据治理的相关问题,从根本和底层上解决数据发展难题,并有助于信息体系的成长发展。而构建数据基因系统需要以数据标准化为原点,从数据元和元数据的标准化开始。标准化是解决数据的关联能力,保障信息的交互、流动、系统可访问,提高数据活化能力。保障信息体系不发生混乱,确保数据规范一致性——避免数据混乱、冲突、多样、一数多源。
随着政府部门的数据越来越多、需求越来越旺、呼声越来越高,压力越来越大,数据管理部门的角色也将发生变化,从收集数据、管理系统、保障低层次运维逐步转变为数据资源管理、挖掘、开放与创新利用,从系统运维保障者进化为数据开发运维者。面对政务大数据的发展需求,亟需对数据基础管理服务平台进行体系性、结构性改造,从数据基因出发,从底层构建数据元标准,通过对信息体系的重构迎来智慧应用的新生。
2017.2.15国脉首发“数据基因”产品奠基政务大数据体系建设
政务大数据基因系统是按照国家、行业和地方标准,通过政务数据元、元数据标准化和数据模板化实现数据规范编辑、智能管理、关联应用和共享开放,以提升全域或行业的数据资源活化和管理能级。它是实现数据跨系统共享交换、创新应用的底层逻辑和关键规则体系,是解决(大)数据混杂、提升数据质量、促进数据创新应用的前提,也是集成信息资源目录体系、交换体系和开放体系三合一的管理平台,为优化政务数据体系、探索数据关系、驱动数据服务奠定基础。是城市和行业数据中心的必备管理工具,实现从管网络、系统到管用数据的跃迁。本文来自国脉物联网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22