
回归的本质是建立一个模型用来预测,而逻辑回归的独特性在于,预测的结果是只能有两种,true or false
在R里面做逻辑回归也很简单,只需要构造好数据集,然后用glm函数(广义线性模型(generalized linear model))建模即可,预测用predict函数。
我这里简单讲一个例子,来自于加州大学洛杉矶分校的课程
首先加载需要用的包
library(ggplot2)
library(Rcpp)
然后加载测试数据
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ## 这里直接读取网络数据head(mydata)
## admit gre gpa rank
## 1 0 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2
#This dataset has a binary response (outcome, dependent) variable called admit.
#There are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous.
#The variable rank takes on the values 1 through 4.
summary(mydata)
## admit gre gpa rank
## Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
## Median :0.0000 Median :580.0 Median :3.395 Median :2.000
## Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
## 3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
## Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000
sapply(mydata, sd)
## admit gre gpa rank
## 0.4660867 115.5165364 0.3805668 0.9444602
xtabs(~ admit + rank, data = mydata) ##保证结果变量只能是录取与否,不能有其它!!!
## rank
## admit 1 2 3 4
## 0 28 97 93 55
## 1 33 54 28 12
可以看到这个数据集是关于申请学校是否被录取的,根据学生的GRE成绩,GPA和排名来预测该学生是否被录取。
其中GRE成绩是连续性的变量,学生可以考取任意正常分数。
而GPA也是连续性的变量,任意正常GPA均可。
最后的排名虽然也是连续性变量,但是一般前几名才有资格申请,所以这里把它当做因子,只考虑前四名!
而我们想做这个逻辑回归分析的目的也很简单,就是想根据学生的成绩排名,绩点信息,托福或者GRE成绩来预测它被录取的概率是多少!
接下来建模
mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(mylogit)
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",
## data = mydata)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6268 -0.8662 -0.6388 1.1490 2.0790
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
## gre 0.002264 0.001094 2.070 0.038465 *
## gpa 0.804038 0.331819 2.423 0.015388 *
## rank2 -0.675443 0.316490 -2.134 0.032829 *
## rank3 -1.340204 0.345306 -3.881 0.000104 ***
## rank4 -1.551464 0.417832 -3.713 0.000205 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4
根据对这个模型的summary结果可知:
GRE成绩每增加1分,被录取的优势对数(log odds)增加0.002
而GPA每增加1单位,被录取的优势对数(log odds)增加0.804,不过一般GPA相差都是零点几。
最后第二名的同学比第一名同学在其它同等条件下被录取的优势对数(log odds)小了0.675,看来排名非常重要啊!!!
这里必须解释一下这个优势对数(log odds)是什么意思了,如果预测这个学生被录取的概率是p,那么优势对数(log odds)就是log2(p/(1-p)),一般是以自然对数为底
最后我们可以根据模型来预测啦
## 重点是predict函数,type参数
newdata1 <- with(mydata,
data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4)))
newdata1
## gre gpa rank
## 1 587.7 3.3899 1
## 2 587.7 3.3899 2
## 3 587.7 3.3899 3
## 4 587.7 3.3899 4
## 这里构造一个需要预测的矩阵,4个学生,除了排名不一样,GRE和GPA都一样newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response")
newdata1
## gre gpa rank rankP
## 1 587.7 3.3899 1 0.5166016
## 2 587.7 3.3899 2 0.3522846
## 3 587.7 3.3899 3 0.2186120
## 4 587.7 3.3899 4 0.1846684
## type = "response" 直接返回预测的概率值0~1之间
可以看到,排名越高,被录取的概率越大!!!
log(0.5166016/(1-0.5166016)) ## 第一名的优势对数0.06643082
log((0.3522846/(1-0.3522846))) ##第二名的优势对数-0.609012
两者的差值正好是0.675,就是模型里面预测的!
newdata2 <- with(mydata, data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100), 4), gpa = mean(gpa), rank = factor(rep(1:4, each = 100))))##newdata2##这个数据集也是构造出来,需要用模型来预测的!newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type="link", se=TRUE))## type="link" 返回fit值,需要进一步用plogis处理成概率值## ?plogis The Logistic Distributionnewdata3 <- within(newdata3, {
PredictedProb <- plogis(fit)
LL <- plogis(fit - (1.96 * se.fit))
UL <- plogis(fit + (1.96 * se.fit))})
最后可以做一些简单的可视化
head(newdata3)
## gre gpa rank fit se.fit residual.scale UL
## 1 200.0000 3.3899 1 -0.8114870 0.5147714 1 0.5492064
## 2 206.0606 3.3899 1 -0.7977632 0.5090986 1 0.5498513
## 3 212.1212 3.3899 1 -0.7840394 0.5034491 1 0.5505074
## 4 218.1818 3.3899 1 -0.7703156 0.4978239 1 0.5511750
## 5 224.2424 3.3899 1 -0.7565919 0.4922237 1 0.5518545
## 6 230.3030 3.3899 1 -0.7428681 0.4866494 1 0.5525464
## LL PredictedProb
## 1 0.1393812 0.3075737
## 2 0.1423880 0.3105042
## 3 0.1454429 0.3134499
## 4 0.1485460 0.3164108
## 5 0.1516973 0.3193867
## 6 0.1548966 0.3223773
ggplot(newdata3, aes(x = gre, y = PredictedProb)) +
geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = .2) +
geom_line(aes(colour = rank), size=1)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18