京公网安备 11010802034615号
经营许可证编号:京B2-20210330
回归的本质是建立一个模型用来预测,而逻辑回归的独特性在于,预测的结果是只能有两种,true or false
在R里面做逻辑回归也很简单,只需要构造好数据集,然后用glm函数(广义线性模型(generalized linear model))建模即可,预测用predict函数。
我这里简单讲一个例子,来自于加州大学洛杉矶分校的课程
首先加载需要用的包
library(ggplot2)
library(Rcpp)
然后加载测试数据
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ## 这里直接读取网络数据head(mydata)
## admit gre gpa rank
## 1 0 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2
#This dataset has a binary response (outcome, dependent) variable called admit.
#There are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous.
#The variable rank takes on the values 1 through 4.
summary(mydata)
## admit gre gpa rank
## Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
## Median :0.0000 Median :580.0 Median :3.395 Median :2.000
## Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
## 3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
## Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000
sapply(mydata, sd)
## admit gre gpa rank
## 0.4660867 115.5165364 0.3805668 0.9444602
xtabs(~ admit + rank, data = mydata) ##保证结果变量只能是录取与否,不能有其它!!!
## rank
## admit 1 2 3 4
## 0 28 97 93 55
## 1 33 54 28 12
可以看到这个数据集是关于申请学校是否被录取的,根据学生的GRE成绩,GPA和排名来预测该学生是否被录取。
其中GRE成绩是连续性的变量,学生可以考取任意正常分数。
而GPA也是连续性的变量,任意正常GPA均可。
最后的排名虽然也是连续性变量,但是一般前几名才有资格申请,所以这里把它当做因子,只考虑前四名!
而我们想做这个逻辑回归分析的目的也很简单,就是想根据学生的成绩排名,绩点信息,托福或者GRE成绩来预测它被录取的概率是多少!
接下来建模
mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(mylogit)
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",
## data = mydata)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6268 -0.8662 -0.6388 1.1490 2.0790
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
## gre 0.002264 0.001094 2.070 0.038465 *
## gpa 0.804038 0.331819 2.423 0.015388 *
## rank2 -0.675443 0.316490 -2.134 0.032829 *
## rank3 -1.340204 0.345306 -3.881 0.000104 ***
## rank4 -1.551464 0.417832 -3.713 0.000205 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4
根据对这个模型的summary结果可知:
GRE成绩每增加1分,被录取的优势对数(log odds)增加0.002
而GPA每增加1单位,被录取的优势对数(log odds)增加0.804,不过一般GPA相差都是零点几。
最后第二名的同学比第一名同学在其它同等条件下被录取的优势对数(log odds)小了0.675,看来排名非常重要啊!!!
这里必须解释一下这个优势对数(log odds)是什么意思了,如果预测这个学生被录取的概率是p,那么优势对数(log odds)就是log2(p/(1-p)),一般是以自然对数为底
最后我们可以根据模型来预测啦
## 重点是predict函数,type参数
newdata1 <- with(mydata,
data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4)))
newdata1
## gre gpa rank
## 1 587.7 3.3899 1
## 2 587.7 3.3899 2
## 3 587.7 3.3899 3
## 4 587.7 3.3899 4
## 这里构造一个需要预测的矩阵,4个学生,除了排名不一样,GRE和GPA都一样newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response")
newdata1
## gre gpa rank rankP
## 1 587.7 3.3899 1 0.5166016
## 2 587.7 3.3899 2 0.3522846
## 3 587.7 3.3899 3 0.2186120
## 4 587.7 3.3899 4 0.1846684
## type = "response" 直接返回预测的概率值0~1之间
可以看到,排名越高,被录取的概率越大!!!
log(0.5166016/(1-0.5166016)) ## 第一名的优势对数0.06643082
log((0.3522846/(1-0.3522846))) ##第二名的优势对数-0.609012
两者的差值正好是0.675,就是模型里面预测的!
newdata2 <- with(mydata, data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100), 4), gpa = mean(gpa), rank = factor(rep(1:4, each = 100))))##newdata2##这个数据集也是构造出来,需要用模型来预测的!newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type="link", se=TRUE))## type="link" 返回fit值,需要进一步用plogis处理成概率值## ?plogis The Logistic Distributionnewdata3 <- within(newdata3, {
PredictedProb <- plogis(fit)
LL <- plogis(fit - (1.96 * se.fit))
UL <- plogis(fit + (1.96 * se.fit))})
最后可以做一些简单的可视化
head(newdata3)
## gre gpa rank fit se.fit residual.scale UL
## 1 200.0000 3.3899 1 -0.8114870 0.5147714 1 0.5492064
## 2 206.0606 3.3899 1 -0.7977632 0.5090986 1 0.5498513
## 3 212.1212 3.3899 1 -0.7840394 0.5034491 1 0.5505074
## 4 218.1818 3.3899 1 -0.7703156 0.4978239 1 0.5511750
## 5 224.2424 3.3899 1 -0.7565919 0.4922237 1 0.5518545
## 6 230.3030 3.3899 1 -0.7428681 0.4866494 1 0.5525464
## LL PredictedProb
## 1 0.1393812 0.3075737
## 2 0.1423880 0.3105042
## 3 0.1454429 0.3134499
## 4 0.1485460 0.3164108
## 5 0.1516973 0.3193867
## 6 0.1548966 0.3223773
ggplot(newdata3, aes(x = gre, y = PredictedProb)) +
geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = .2) +
geom_line(aes(colour = rank), size=1)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27