
云计算大数据融合安防未来应用丰富多彩
安防云、大数据的时代已悄悄来临,这将对整个安防生态链产生影响。云计算促使安防行业中商业模式的变革,会涌现出一批安防服务型企业,提供安防云服务,使更多的人享受到安防服务。大数据能够针对海量数据进行高效的存储和处理,包括快速检索、高效分析、事件预测、预判等,以此提升安防云的服务能力,为用户提供更好的服务。云计算、大数据当前都还处于发展的初级阶段,未来行业应用备受瞩目。
云计算、大数据给安防企业带来新机遇
随着云计算、大数据的逐渐渗入,安防行业的发展已经到了一个历史转折点,这给广大的企业带来了新的机遇。
首先,针对云计算的业务模式,企业可将细分行业作为切入点,如在教育、医疗、家庭、个体商户、环保等领域,为特定的用户提供专业的安防云服务。
其次,在大数据领域,企业可以利用大数据技术深入创新,开发出有价值的应用。大数据可以进行数据的深入挖掘、预测分析,为用户带来更为丰富的服务,同时提升企业的价值。当然,大数据有一个前提,数据要足够广、足够大,而且谁掌握了数据,谁就有更好的机会。随着云计算业务模式的发展成熟,数据量必然会越来越大,而安防云的服务商将会是直接的受益者,因为他们掌握了大量的数据。
再次,在云计算、大数据影响到的领域中,都会有相应的机会点,如改善视频智能技术、改善视频编码技术、参与标准制定、参与视频云服务平台建设等等。
在云计算的浪潮下,探索和发展安防云商业模式;在大数据的浪潮下,创新业务功能,丰富安防云服务。企业必须拥抱云计算、大数据,转变发展思路,创新业务模式,利用新技术发展新业务,在新的安防云时代下迎接新的机遇和挑战。
大数据成安防监控发展潮流
最早提出“大数据时代”已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在《大数据时代到来》报告中指出,大数据现在已经进入全球经济的各个部门,就像其他的生产必备要素一样,许多现代经济活动离开了它根本不能发生,大数据将带来一波生产率增长和消费者盈余浪潮。而至今,它也将开启中国监控资本市场的新一轮的寻宝游戏。
在视频监控领域,伴随着高清监控时代的大潮,产生了越来越多的海量视频数据。但是,大量的视频数据仍然是独立的、零散的。视频录像数据散布在各个行业、单位独立的系统中,没有发挥达到联网、共享,业界也没有形成对数据挖掘、利用的通用方法,核心技术仍然在研究中,尚没有实现重大突破。
目前大量的视频监控数据运用于安防领域,但主要以人工搜索为主,政府之间跨警种、跨部门、跨区域的联网共享应用仍然较少,更不用说为老百姓、为社会所用的应用还没有启动。如能开放这些视频资源,为老百姓服务,而不仅仅用于治安、刑事案件,能通过信息公开、数据共享、数据挖掘推动新型的数据服务业的大发展,将是社会的福音。
大数据是未来发展趋势,中国很多公司现在都在做大数据业务,但真正将大数据的挖掘和应用落到实处,转变为商业模式的企业还是很少,目前很多大数据概念都是噱头。而安防企业需要做的,便是积极加强内功,提高研发能力,加强技术储备,应对更大数据量带来的冲击。后期安防厂家会进行分化,部分传统安防厂家更加专注于某固定安防领域继续深耕,专注于产品和技术,一部分安防厂家会向大安防集成平台转变,专注于业务整合和数据分析处理。
云存储为安防领域添彩
平安城市、智慧城市的建设促使安防云存储技术的应用,智慧城市提出,其一大要求就是将视频存储数据相互之间进行联动、共享,例如在犯罪追踪时,公安、交通、民用行业等多范围的存储数据能够共享,而这种共享具备了云存储的特性;传统的存储技术无法满足社会发展需求,云存储的在安防领域的应用成为必然。
当前国内几个平安城市已经做了尝试,未来将由试点的模范作用,借助于智慧城市的大规模应用,聚集众人力量,推进相关的应用标准完善,相信可以更快地推动云存储在安防领域的应用。
当前的应用需求方面,部分行业用户,例如石油、煤矿、金矿等,需要将所有的数据汇总一起进行分析处理,这种需求在可以打造私有云;而部分用户想要建设整个监控系统,却又不想花费太多精力,又希望整个城市的所有数据能够进行共享,出现意外时能故偶及时联动,这就可以采取共有云方式。以上这些应用模式得到广泛应用的话,将会对传统的安防工程商、集成商具有重大的冲击。
未来通过云存储,越来越多的IT行业的技术与理念引入安防,传统的安防将会遇到越来越大的挑战,甚至有业内人士预计,安防行业将会逐渐被IT同化。云存储技术在安防领域的推广,还存在条件限制,作为安防领域的主要分支视频监控,其数据量对宽带的消耗量非常大,目前还不具备数据中心化的条件,云存储在安防领域的应用还将走一段长路,但是随着当前互联网发展,云安防的前景将会更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08