
美团云“云时代大数据”交流会在京举行
在大数据时代,随着互联网产业的发展,企业的数据处理能力也被提升到了重要的地位,BIG DATA思维已经渗透到当今每一个行业和业务领域,成为社会发展浪潮中的主旋律之一。时至今日,“大数据”显然已成为最火热的IT行业词汇。
8月28日,云计算行业新贵——中国最大的生活服务业电子商务平台旗下美团云、创业者线下沙龙领导者——葡萄创投、为技术极客而生的开发者平台——Codefollow联合出击。一场名为“云时代大数据与产品创新”的交流会在北京中关村举行。
美团经过五年多的发展,今年即将达到千亿量级的规模,业务类型也突破了传统的团购范畴,在电影、酒店、外卖等垂直行业也都取得了非常好的成绩。而在美团的发展当中,云计算和大数据都发挥了极为重要的作用。此次交流会的分享嘉宾——美团云架构师李慧霸以及美团数据专家吕永超也为我们带来了其中的干货。
美团云诞生于2012年,这个时间点非常洽当:一方面当时业务平台已经遇到了一些棘手问题,而这些问题恰好可以用云计算技术来解决;另一方面当时美团业务规模还不算太大,可以较为容易地迁移到云平台,两者一拍即合。美团云平台承载了美团全部业务之后,帮助业务平台解决了资源交付周期长、应用之间影响大、资源利用率低、资源回收难、资源用量不可计量等困难问题,并且还通过优化调度等手段提高了可用性、性能、效率。
美团还采用云平台来搭建研发环境。研发工作通常具有探索性、反复性、故障性,甚至具有一定的破坏性,所以用户之间必须能够完全的隔离开;另外研发环境不能产生直接收益,通常资源量相对较小。这两方面原因都使得研发环境对云平台产生更强烈的需求。美团的研发云允许工程师在配额内自助使用资源,极大提高了工作效率。这样的研发环境同样可以用公有云+VPN的方式实现。
美团也将云平台技术和资源开放出来,成为一种公共服务。公有云服务对稳定性要求更高,因此美团秉承『先做实,再扩展,做用户心中的可信云平台』的原则,大力建设基础设施,积极研发高新技术,完善产品线,确保API高度兼容业内标准。目前美团云已经获得了国家颁发的可信云认证,但美团云的目标是要做用户心中的可信云,让用户只需关注自己应用的核心业务逻辑,由美团云来提供并确保基础设施和平台的可靠运行。
在介绍了对于大数据(来源多样、规模大、处理效率要求高、应用价值大)的独有理解后,吕永超介绍了美团目前拥有的大数据,重点突出了大数据的价值如何在美团O2O的商业环境中进行落地,并强调只有结合业务场景把死的数据转换为商业洞察力,大数据才是有价值的。通过列举一些数据在美团应用的具体场景,大家体会到了大数据的真正价值。
随后,吕永超介绍了如何把这些数据价值发挥出来的大数据解决方案:针对大数据的特征,围绕“采集、存储、计算、应用”四大模块的技术体系,并介绍了各个模块涉及的具体技术点。以七夕这个最近刺激高消费的节日为例,计算DAU和GMV,数据如何从业务端生成到最后加工为可用指标的流转过程以及各技术模块间的配合,同时指出了随着业务规模和复杂度的发展,计算简单的指标都会需要复杂的技术体系:计算的数据量巨大;以事业群独立发展的各业务形态不一,源数据的存储和内容都会有很大的差异,业务口径的理解也有不同;业务间的交叉需要区分重复数据;复杂的竞争环境需要更快而灵活的获取高质量数据等等。也是在这样的业务挑战下,对美团大数据技术提出了很高的要求,也促进了大数据团队做了很多技术积累。
接着,针对本次交流主要面向初创公司技术人员的背景,吕永超对商业分析的标配——商业智能技术进行了详细介绍,围绕商业智能“源数据-后端处理-前端应用”介绍了当前美团新一代商业智能平台的技术架构以及相关的数据产品,并提出了商业智能是随着业务发展在提高商业洞察力的过程中不断迭代优化的解决方案,新一代商业智能平台也是根据美团从12年单一的团购模式发展为现在以团购业务为平台,电影、外卖、酒店等品类垂直发展的“T”型战略所决定的,需要从单一的IT解决方案演化为“IT+业务+治理”的综合解决方案。
最后,吕永超展望了大数据将来的发展趋势,也分享了将来美团在大数据提升商业洞察力方面的一系列规划,并提出大数据+云计算的服务模式:既然云计算已经在支撑各业务的技术,同样也可以把大数据技术部署在云端,在做了大量技术积累满足了内部业务需求的同时也把能力开放出来,帮助更多的企业以更低的成本更高效的提升商业洞察力,而这样的过程对于美团和云端用户来说也是一个双赢的局面。
经过简单但精彩的互动提问环节,交流会圆满结束。会后两位专家与到场嘉宾频频互换联系方式,并进行了深入的单独交谈,大家对于美团云大数据处理方式已经能够对自身创业产生的帮助十分感兴趣。而美团云作为云行业新势力,势必会迎来更大的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08