京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美团云“云时代大数据”交流会在京举行
在大数据时代,随着互联网产业的发展,企业的数据处理能力也被提升到了重要的地位,BIG DATA思维已经渗透到当今每一个行业和业务领域,成为社会发展浪潮中的主旋律之一。时至今日,“大数据”显然已成为最火热的IT行业词汇。
8月28日,云计算行业新贵——中国最大的生活服务业电子商务平台旗下美团云、创业者线下沙龙领导者——葡萄创投、为技术极客而生的开发者平台——Codefollow联合出击。一场名为“云时代大数据与产品创新”的交流会在北京中关村举行。
美团经过五年多的发展,今年即将达到千亿量级的规模,业务类型也突破了传统的团购范畴,在电影、酒店、外卖等垂直行业也都取得了非常好的成绩。而在美团的发展当中,云计算和大数据都发挥了极为重要的作用。此次交流会的分享嘉宾——美团云架构师李慧霸以及美团数据专家吕永超也为我们带来了其中的干货。
美团云诞生于2012年,这个时间点非常洽当:一方面当时业务平台已经遇到了一些棘手问题,而这些问题恰好可以用云计算技术来解决;另一方面当时美团业务规模还不算太大,可以较为容易地迁移到云平台,两者一拍即合。美团云平台承载了美团全部业务之后,帮助业务平台解决了资源交付周期长、应用之间影响大、资源利用率低、资源回收难、资源用量不可计量等困难问题,并且还通过优化调度等手段提高了可用性、性能、效率。
美团还采用云平台来搭建研发环境。研发工作通常具有探索性、反复性、故障性,甚至具有一定的破坏性,所以用户之间必须能够完全的隔离开;另外研发环境不能产生直接收益,通常资源量相对较小。这两方面原因都使得研发环境对云平台产生更强烈的需求。美团的研发云允许工程师在配额内自助使用资源,极大提高了工作效率。这样的研发环境同样可以用公有云+VPN的方式实现。
美团也将云平台技术和资源开放出来,成为一种公共服务。公有云服务对稳定性要求更高,因此美团秉承『先做实,再扩展,做用户心中的可信云平台』的原则,大力建设基础设施,积极研发高新技术,完善产品线,确保API高度兼容业内标准。目前美团云已经获得了国家颁发的可信云认证,但美团云的目标是要做用户心中的可信云,让用户只需关注自己应用的核心业务逻辑,由美团云来提供并确保基础设施和平台的可靠运行。
在介绍了对于大数据(来源多样、规模大、处理效率要求高、应用价值大)的独有理解后,吕永超介绍了美团目前拥有的大数据,重点突出了大数据的价值如何在美团O2O的商业环境中进行落地,并强调只有结合业务场景把死的数据转换为商业洞察力,大数据才是有价值的。通过列举一些数据在美团应用的具体场景,大家体会到了大数据的真正价值。
随后,吕永超介绍了如何把这些数据价值发挥出来的大数据解决方案:针对大数据的特征,围绕“采集、存储、计算、应用”四大模块的技术体系,并介绍了各个模块涉及的具体技术点。以七夕这个最近刺激高消费的节日为例,计算DAU和GMV,数据如何从业务端生成到最后加工为可用指标的流转过程以及各技术模块间的配合,同时指出了随着业务规模和复杂度的发展,计算简单的指标都会需要复杂的技术体系:计算的数据量巨大;以事业群独立发展的各业务形态不一,源数据的存储和内容都会有很大的差异,业务口径的理解也有不同;业务间的交叉需要区分重复数据;复杂的竞争环境需要更快而灵活的获取高质量数据等等。也是在这样的业务挑战下,对美团大数据技术提出了很高的要求,也促进了大数据团队做了很多技术积累。
接着,针对本次交流主要面向初创公司技术人员的背景,吕永超对商业分析的标配——商业智能技术进行了详细介绍,围绕商业智能“源数据-后端处理-前端应用”介绍了当前美团新一代商业智能平台的技术架构以及相关的数据产品,并提出了商业智能是随着业务发展在提高商业洞察力的过程中不断迭代优化的解决方案,新一代商业智能平台也是根据美团从12年单一的团购模式发展为现在以团购业务为平台,电影、外卖、酒店等品类垂直发展的“T”型战略所决定的,需要从单一的IT解决方案演化为“IT+业务+治理”的综合解决方案。
最后,吕永超展望了大数据将来的发展趋势,也分享了将来美团在大数据提升商业洞察力方面的一系列规划,并提出大数据+云计算的服务模式:既然云计算已经在支撑各业务的技术,同样也可以把大数据技术部署在云端,在做了大量技术积累满足了内部业务需求的同时也把能力开放出来,帮助更多的企业以更低的成本更高效的提升商业洞察力,而这样的过程对于美团和云端用户来说也是一个双赢的局面。
经过简单但精彩的互动提问环节,交流会圆满结束。会后两位专家与到场嘉宾频频互换联系方式,并进行了深入的单独交谈,大家对于美团云大数据处理方式已经能够对自身创业产生的帮助十分感兴趣。而美团云作为云行业新势力,势必会迎来更大的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26