京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一名优秀的项目数据分析师要懂得如何实际处理、运用数据,还需要良好的沟通交流能力、团队合作精神、文字语言表达能力、较好的逻辑分析能力,甚至还应该具备独立的产品策划开发能力、项目管理及商务沟通能力等。
借用一位数据分析牛人总结过的话来说,数据分析师一定要懂点战略,才能结合商业;一定要漂亮的presentation,才能buying;一定要有global view,才能打单;一定要懂业务,才能结合市场;一定要专几种工具,才能干活;一定要学好,才能有效率;一定要有强悍的理论基础,才能入门;一定要努力,才能赚钱;最重要的:一定要务实,才有reputation。
下面让我们来谈谈一名合格的数据分析师必备的基本一些基本能力和素质:
1、严谨负责的态度
当下的数据俨然之多之大,时常让人无从下手、头昏脑胀,但不可因此就以随便忽悠的心态处理数据,只有本着严谨负责的态度,才能确保数据的客观性与准确性。对于一个专业的数据分析师来说,数据是用来尊重的,不是用来随便玩玩的。
在企业里,数据分析师无疑充当着“医生”的角色,通过对企业运营数据的分析,来为企业寻找症结及问题所在,从而使企业大大小小的弊端得到改正、改善。
如果一名数据分析师不具备严谨、负责的态度,受其他因素影响而更改或大意处理数据,隐瞒企业存在的问题,对企业的发展是非常不利的,甚至会造成严重的后果。因此,数据分析师必须保持中立立场,客观评价企业的发展,以数据作为事实,为决策层提供有效、正确的参考依据。
不管任何情况下,都能持守严谨负责态度的数据分析师才真正值得企业与客户的信任,才算得上一名合格的分析行业从业者。
2、持久强烈的好奇心
在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,而不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列的问题都需要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。只有在这样强烈好奇心的推动下,隐藏在数据内部的真相才能被积极主动地发现和挖掘出来。
并且,数据分析师的好奇心必须是持久的。若仅仅满足于当下的问题,没有刨根问底的精神,就会很容易、轻易地下结论,而这种结论的正确率往往并不高。进行数据研究时,只有不断抛出新的问题,对数据进行敏感而持久的研究,才能优化甚至彻底颠覆自己原建的模型。
3、清晰有序的逻辑思维
通常从事数据分析时所面对的商业问题都是较为复杂的,数据分析师不但要考虑错综复杂的成因,分析可能面对的各种纷繁交杂的环境因素,并且需要在若干发展的可能性中选择一个最优的方向。这不仅建立于对事实有足够了解的基础上,更需要数据分析师自身能真正掌握问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能切实、客观、科学地找到商业问题的答案。
4、游刃有余的模仿力
在进行数据分析时,数据分析师一方面要逐步产生自己的想法,另一方面,也需要借鉴、参考他人优秀的分析思路和方法。这就是所谓的模仿力。
但模仿并不是盲目地进行,更不是直接照搬,成功的模仿需要领会他人方法之精髓,透彻理解其分析原理,透过表面达到实质,从而将他人的成功经验与思维精华内化为自己的知识,到最后,不但不被他人的思维制约、限制,还可使自己的专业能力迅猛成长。这就是所谓游刃有余的模仿力,也是一名优秀的数据分析师必备的素质之一。
5、独特新颖的创新力
中国的数据分析师缺少的往往不是模仿力,而是独特新颖的创新力。据相关报告显示,中国各行各业的创新能力与日本、美国等发达国家相比差距仍然很大。
创新是一名优秀的数据分析师应具备的素质,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。在数据领域的分析方法和研究课题千变万化,墨守成规是无法很好地解决层出不穷的新问题的。
去网上查查相关的数据分析师招聘信息吧,你一定会发现,具备创新能力的人通常更受企业的青睐。
我们必须正视,数据爆炸的时代下,对数据分析师的要求也越来越严格,但只要坚持基本的原则,不断学习增强自身能力,经过时间的沉淀,就一定能成为数据分析领域的佼佼者。(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20