京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近期,许多大企业信息技术部总管表示,聘用资优数据人才非常困难。而美国高等学府每年培养的数据人才也只有区区千人,每个毕业生就有四家公司提供聘书。
《华尔街日报》11月11日报导说,“大数据”(Big Data)时代来临,公司急需的数据家不仅需要拥有工程知识和商业能力,还需对数据有敏锐的感觉,这样他们才能胜任分析和处理“大数据”公司提供的各项数据和信息。
与此同时,高等学府也正在努力提供同时涉及多个领域的课程,希望能籍此培养出更多的数据专才。这些课程鼓励学生拓宽思路,启发他们利用科技和商业工具,从而成为合格的数据家。
不过,对于大学院校来说,要培养出同时在数学、计算机和商科等数个领域内具有很强能力的学生实属不易。美国第一批提供数据学课程的大学之一、北卡州立大学高等分析学院(Institute for Advanced Analytics at North Carolina State University)创始人拉帕(Michael Rappa)表示,传统大学的结构并不利于跨科目的教育方式。
麦肯锡全球机构(McKinsey Global Institute)顾问Michael Chui在上周戴尔公司举办的一项客户活动中发言表示,到2018年,将会出现14万至18万个数据家空缺。对于信息技术长官们,这样的情况自然不能接受。他们需要数据家来解开深藏在公司数据中的商业信息和价值。
在SunTrust Banks Inc银行任职信息主管的薛立言(Anil Cheriyan)表示,数据家的职位由两人担任。一位数据能力强的工作人员先以深度的商业知识和经验将数据进行归类、整合和管理。然后,另一位致力分析的工作人员采用数据模型和数据挖掘的方式来对客户分类,或研究有关产品、风险等方面的课题。薛立言认为,要找到一个人有能力同时涉足这两大领域非常困难。不过他相信,随着这个领域的发展和成熟,这样的全面型人才逐渐会出现。该行已经开始将数据处理和分析这两个领域的工作人员一起培训了。
美国密西西比大学医疗中心(The University of Mississippi Medical Center)信息主管周大卫(David Chou)表示,他们聘用了不少可以分析数据的研究员,但是他们不懂如何将这些分析用来实质改善对病人的照看料理。“他们不具备这方面的能力。”
北卡州立大学高等分析学院的创始人拉帕表示,要想具备这些能力,关键是采用跨部门的学习和培训。在他们的学院,学生必须花整整十个月,一周五天,朝九晚五,主修应用数学、统计、计算机、金融和市场学。其中许多课目是一个数据家应当暸解的内容。学院会提供给学生来自政府的真实、但隐去真名实姓的数据,让他们分析并解决经营方面的具体问题。自2007年建立以来,该校已有340名毕业生,还有85名将在2015年毕业。平均每个毕业生获得四家公司的聘书。
《华尔街日报》引述拉帕说,美国大约有70家高等学府教授类似的分析课程,其中包括西北大学(Northwestern University)、纽约大学(New York University)和哥伦比亚大学(Columbia University),每年大约产生1000名数据家,完全不能满足市场需求。
尽管企业和大学都在努力培养数据人才,但是也有专家认为数据分析还是需要依赖软件,没有必要花费大力气培养这么多的专业人士,企业不用如此“小题大做”。
拉帕先生不赞同这样的说法。他认为,计算机可以处理比较简单的工作,但是数据家们必须在使用和分析数据时保持创新的态度,才能应对经营方面不断出现的新挑战。
互联网、社交网站、电子商务等新一代技术的广泛应用催生了“大数据”。“大数据”(Big Data)指巨量数据的集合。大数据具有多样化和海量的特点,而且无法用常规软件工具分析。西方企业开始认识到,善用“大数据”将成为提高核心竞争力的关键。卡内基梅隆大学(Carnegie-Mellon University)海因兹学院(Heinz College)院长克里希南教授(Ramayya Krishnan)说,“大数据”具有催生社会变革的能量。但是释放这样能量,需要严谨的数据家、富有洞见的数据分析和激发管理创新的环境。(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27