
打造精准农业!以物联网、大数据酿造葡萄酒
“啥咪? 计算机马也会选土豆喔?”
耳熟能详的一句广告词,但你知道吗?现在已经不只是计算机会选土豆,而是连土豆本身都会上网的时代了!
当年来到英国时,酒哥的主要目标是攻读通信工程的学位,出发前完全没预料到会在课余时花上三、四年的时间取得WSET Level 4的认证资格。但再怎么不务正业,好歹还是花了四年的时间一圆初衷 – 从这所世界前十的帝国理工拿到了理工博士的学位。因为两个领域的所学都略有小成,目前酒哥正以自己的专业结合对葡萄酒的知识,投入以科技帮助精致农业更上一层楼的领域之中。为了证明四年的研究没有白做,今天酒哥就来跟大家说说,在物联网(Internet of Things, IoT)时代里,大数据如何帮助葡萄酒产业生产出一桶又一桶的醇美佳酿。
精准农业(Precision Agriculture)是什么?
传统农耕是货真价实的"看天吃饭",农夫们凭借着累积下来的经验预测气候的变化,并在施作时做相应的调整。但人定胜天毕竟有其极限,更多时候我们看到的是电视新闻里农人们望着歉收田地时的那令人鼻酸的无奈。尤其近年来极端气候出现的频率越来越频繁,传统的经验法则也逐渐失去了该有的功效,以现代科技来协助耕种已经成了一股不可逆且必要的趋势。
就基础技术而言,精准农业基本上属于网络实体系统(Cyber-Physical System)下的一个分支。大量的物理讯息的透过各式传感器及遥控摄影装置进行收集;这些讯息再利用物联网技术传回云端进行分析;最终再透过物联网技术传回自动化系统,并将这些分析及决策结果反馈回物理世界当中。
(谜之音:酒哥,你还是说中文吧!)
简单来说,这就好比我们在一块农地里安排了无数的家庭小精灵多比,这些多比们会随时回报关于这块农地里的一切数据,空气湿度/土壤酸碱度与含水量,甚至有没有害虫入侵,这些攸关作物生长的讯息搜集后会透过无线网络(没错,现在连在田里都能接Wifi,但不一定有宝可梦就是了…)上传到云端以软件分析,接着农夫们就依据这些分析的结果执行相对应的动作:虫多除虫、土干浇水。
而从宏观的角度,精准农业可再配合先进的气象预测、基于卫星摄影技术所建构的地理信息系统、以及无线遥测监控技术,将"大自然"这个庞大的不确定因素也变得可以掌握,大幅减低了农作物被气候影响收成的风险。在这些信息的加持下,某种程度上人类已经战胜了自然,"看天吃饭"这四个字看起来也不再这么无助了。
这些参数经过分析后除了可以帮助耕作者进行决策之外,也能透过自动化系统,针对实际所需,订制化地执行洒水、施肥、播种等工作。最终在农作物质量/产量/成本之间取得优化的平衡,实现在大规模的农耕环境下达到精耕细作的目标。
重点来了,做为精致农业中的代表性产业,葡萄酒园当仁不让地成为最理想应用场景之一。原因在于葡萄对生长环境的敏感度及要求很高,一公尺高度差造成的温湿度差异都有可能导致葡萄质量上的分别,更别说葡萄园间的空气对流、日照及土壤状况这些具有决定性影响力的因子,这也是为什么很多大师们在介绍酒款时一定要先大概描绘一下这支酒产区的地理及气候环境,绝对不是要骗稿费,而是因为向阳或背光可是会影响到一支酒未来是table wine还是东贝利的分水岭!
▲ 透过无人机自动远程监控的葡萄园
除了栽植外,葡萄酒的酿造及储藏也是技术应用的一环,整合物联网技术的数据收集,并配合数据挖掘(Data Mining)技巧及机器学习(Machine Learning)模型,许多原本未知的潜藏的信息可以被发掘出来。这些信息除了能够作为酒厂优化其设备及生产流程的参考之外,还能在一定程度上协助降低酒厂整体的营运成本,使酒厂可将资金更有效的运用在提升葡萄酒质量及营销上。
▲ 精准农业帮助产业升级的应用流程
看那年年与艺术家合作设计酒标的Chateau Mouton Rothchild,虽然传统上在五大酒庄当中并非顶尖,但近年来价格却有超英赶美的趋势,特别是在2000年时为千禧年所设计的特殊瓶身已经成为各路收藏家心中的梦幻逸品,此即为营销的威力所在。
▲ 五大酒庄之一的Ch?teau Mouton Rothschild
科技与传统的拉锯
曾听酒界的前辈说过,只有小规模生产的酒款,才是真正的好东西,只有规模小,酿造者才能将其所有的时间与精力投注于照顾葡萄园及酿造当中。然而,身为科技人的酒哥对这样的说法则不置可否。比起单一酿造者的经验传承,新兴技术的背后其实都是累积了无数人类智慧的结晶才得以实现。因此,虽然许多人及酒界前辈们大概不认同,但酒哥衷心的认为,年产量上看30-50万瓶的波尔多五大酒庄,及500万瓶的香槟王在维持质量及产量所耗费的总时间及精力,可是比时下流行的膜拜酒(Cult Wine或Garage Wine)来的高多了(毕竟一旦质量砸锅了影响到的可是上百个亿的生意啊)。也因为这样,接纳现代技术并结合传统栽植酿造理念所培育出来的经典酒款,更是令我感到由衷敬佩。
▲年产量7,500瓶的Screaming Eagle以及年产量500,000瓶的Chateau Lafite Rothchild
话虽如此,这就和VinoType一样,青菜萝卜各有所好;无论你喜欢追求小量生产的稀有酒款,还是和酒哥本人一样期待在葡萄酒上看见下个世代的农产工业革命,只要能在品饮葡萄酒这条路上留下属于自己的一条足迹,那便不枉此行了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15