京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,品牌广告价值究竟该如何衡量
用曝光和点击来衡量品牌广告价值并不合适
《盗梦空间》中有一句台词是这样说的:这个地球上力量最强大的,就是往人们的头脑里植入一个念头,这个念头会生根发芽,最终变成不可阻挡的行动。
品牌广告要干的就是这个事,向用户头脑中植入一个念头,促成他们下一步行动。这正是品牌广告的生命和魅力所在。但在2015年一家咨询公司的调研结果中,却发现一个很有意思的现象。调研机构向代理行业中一些有话语权和决策权的人问“你们认为一个成功的品牌营销的活动,期望它是什么结果”,有56%的人说最重要的是有没有给用户留下品牌印象和改变他们的购买意愿。第二个问题”在实际执行的时候你们是如何测量的呢“,69%的人选择通过曝光和点击
。 把这两个回答放在一起对比发现:我们想要测量的,是我们试图植入用户脑子里的念头,是一种主观的态度。但实际测量的却是用户表现出来的一些微弱的行为。同样,在社会科学领域也都存在这样的情况。我们最关心的指标难以量化,或者难以观测,于是就用一个比较相关的、可以观测的、可以量化的指标来代替。
但是,在品牌广告领域,这样的替代是否合理?曝光和点击真的能够衡量我们想要衡量的用户脑子里的主观态度吗?
关于曝光,在Sizmek发布的《2015年中国数字广告可见性报告》中表明,大概有50%以上的广告并没有被看见。而对于可见的曝光,广告真真实实出现 在屏幕上,用户就真的会看到吗?有没有可能会视而不见呢?以大家的生活经验来推断,这种情况还是非常有可能的。所以如果用曝光来衡量品牌广告效果的话,可 能会有很大的注水或者泡沫成分,因为很多曝光实际上并没有对用户形成任何影响。
关于点击,这确实是个有效且重要的指标,但是当我们衡量广告对用户影响的时候,点击不是唯一的。有些广告会让我们会心一笑,有些广告让我们恍然大悟,有些 广告能触动我们内心最柔软的部分,当然,也有一些广告,让我们深深厌恶。但是这些深刻的影响却都不会形成点击。如果再用点击去衡量,就会漏掉大量正面的影 响,也掩盖了有可能存在的负面影响。再比如说视频前贴片广告,当你在一集一集追热剧的时候,恐怕也不会点击视频前贴片来打断你的观影行为。由此可见,用点 击来衡量广告效果也是不合适的。因此,我们可以得出结论:用曝光来衡量,就像是买到注水肉;用点击来衡量,则是捡了芝麻,掉了西瓜。
品牌广告对用户产生认知、情绪、行为三方面影响,但目前的测量方法存在缺陷谈到广告测量,通常大家会认为是独立第三方公司应该做的事情。确实,如果从避免利益冲突的角度,当然应该由独立第三方完成。但是从推动行业进步的角度,应 该是大家共同努力的目标。一方面,品牌广告测量做好了,能吸引更多预算流入数字媒体,大家都能受益;另一方面,随着移动设备的普及,大数据和人工智能技术 的日趋成熟,以前不可测量的东西,现在变得可以测量。数字媒体由于和用户有直接交互,也有着独特的优势。
那如何来解决呢?
行业里通常把品牌广告对用户的影响分为三方面:认知、情绪、行为。以前我们会用漏斗来表达这三种影响的先后顺序,先有认知,再有情绪,再有行动。但是进入 移动互联网时代,人们对品牌信息的获取是多渠道、多层次、无处不在的。所以搜狐认为一个品牌广告会对不同的人群同时产生三个不同方面的影响。我们要测量, 也要同时测量三个方面的影响。
针对这三方面,目前的测量方法达到一个什么程度呢?
首先,在认知方面。目前大家用的主要是 GRP/PV/TA 等触达指标。正如前面所讲,触达是发送,而发送和收到是完全不同的两个概念。触达的人群里,真正收到广告且领会广告想传达的信息,有20%吗?表示存疑。
其次,在情绪方面。用户喜欢我们的广告吗?不知道。甚至我们在实际投放中,发现有些广告对受众的情绪影响是负面的,而且这并非个案。
最后,在行为方面,可以说行为是目前衡量是最充分的,虽然点击不能代表认知和情绪,但是它在行为方面还是比较有效的。
那么,将三者综合算一下,相对于我们想要测量的目标,目前的测量手段只达成了20%。
这80%的差距,给媒体带来了巨大的伤害。以视频广告为例,因为80%的效果目前在黑洞里,无法被测量,也无从被认可。投放广告的人心里没底,就要加大投放,同时压低价格。导致媒体充斥大量无效广告,对用户,对媒体,对广告主,是个多输的局面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22