京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,医疗数据安全不容忽视
在网络信息爆炸的今天,我们已经听过很多有关金融服务公司和零售商出现安全漏洞的事件了。令人惊讶的是,据最新的调查报告显示,与金融服务公司及零售商相比,医疗机构网络被攻击的频率才是最高的。
黑客从漏洞系统下手
令人担忧的是,很多医院目前都拥有不少基于互联网的医疗设备,包括起搏器、呼吸机等生命维持装置。一旦黑客破解了医院的设备网络系统后,就可以获取心脏起搏器、呼吸机的访问权限,其后果不堪设想。尽管以往这样的事件只会出现在科幻小说里,但是现在,很可能变为现实。
黑客已经将目光日渐瞄准了那些还在使用有漏洞的旧版操作系统的医疗机构,通过将一些新技术植入软件中,能够成功绕过传统安全防火墙进入医院网络,对其中的敏感数据进行访问。
患者数据存在黑市交易
不过,有一点可以减轻黑客所引起的恐慌的是,即这些黑客其实大多只是想获取可以卖出的数据,而不是真的想制造混乱。
有证据表明,熟练的黑客在袭击医疗机构之后,会费尽心思地去获取有价值的病人病历,以此通过黑市获取可观收益。
2016年年末的一份报告显示,美国医疗行业每年因数据泄露平均损失62亿美元。随着互联网和医疗的结合越来越紧密,医疗数据泄露也变得越来越容易。
健康医疗大数据利用的前提:对数据的控制和保护
在健康医疗大数据背景下,医疗信息化建设必然打破传统的数据孤岛,转而走向共享、开放。因此,健康医疗大数据将呈现日益活跃的“流动”趋势,在“流动”中发挥价值。比如,分级诊疗、远程医疗、健康管理等新业态的产生,必然驱动数据的有序流动、合理利用和安全分享。
但是,在数据“流动”的过程中,存在诸多隐患问题:对个体而言,特别关心数据的隐私泄露问题;对卫生医疗机构和主管部门来说,则关心数据是否“健康”,也即数据是否真实、完整、可信,关心敏感的大数据分析结果、政策依据等是否会泄露。安全,已经成为了健康医疗大数据的核心关切点。
当前,我国健康医疗大数据面临着前所未有的安全挑战。在互联共享的时代,数据全生命周期的每一个环节都无法独善其身,根据木桶效应,任何环节的短板都会导致全生命周期的崩溃。而互联网+时代导致数据的边界越来越模糊、越来越开放,进而导致各类网络攻击的手段越来越先进、越来越隐蔽、功利性越来越强。另一方面,业界的数据安全意识和保护手段还很薄弱,信息系统多采用用户名+口令等较弱的访问控制方式,对于数据更是无任何的保护措施,可以说,很多数据正在“裸奔”。
保护健康医疗数据安全
为了更好地保护健康数据,欧洲开启了一项名为KONFIDO的项目,旨在通过识别和阻止网络攻击加强网络安全。项目由欧盟2020地平线( Horizon 2020)项目出资,并且有15家来自行业、学术界和健康产业的不同合伙人加入。计划的目标之一,是开发出一种可以快速识别对健康数据存在潜在网络威胁的电脑程序。这种电脑程序不但可以很好地识别网络威胁,并且可以通过互联网络,把受到威胁的数据转移到更为安全的地方,从而规避网络攻击。
在大数据时代,健康医疗信息的安全需求归根结底就是两点:控制与保护!而数据的控制与保护,都必须在“网络可信体系”中实现。健康医疗大数据需要的“网络可信体系”又是什么呢?对此,《国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见》(国办发〔2016〕47号)的出台特别在12条中进行了权威解释:“推进网络可信体系建设:强化健康医疗数字身份管理,建设全国统一标识的医疗卫生人员和医疗卫生机构可信医学数字身份、电子实名认证、数据访问控制信息系统,积极推进电子签名应用,逐步建立服务管理留痕可溯、诊疗数据安全运行、多方协作参与的健康医疗管理新模式。”其中,可信医学数字身份、电子实名认证、电子签名应用等关键词,需要特别标红提示!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27