
在大数据时代对数据内涵的思考
当今,医疗和生物药学研究正处在数据革命之中。网络系统、电子健康档案、电子保险索赔数据库、社交媒体、病人登记、智能手机和其他个人设备对人类健康和医疗保健共同组成一个巨大而多样的新数据来源。而且,这些“真实世界”的资源可以提供病人所处环境(无论在家里还是在工作单位)以及其日常生活的社会环境的数据。许多研究人员迫切希望通过研究这些数据可以为病人健康和医疗产品的安全性和有效性评价提供更准确、更精准的答案,因为只有这样做,才能比以前更快、更高效、并以更低的成本开展临床试验。
但是在实现医疗数据产生的戏剧性革命之前, 我们必须克服许多现实在物质基础方面和科学技术方面的挑战。其中,必须解决的第一个问题就是术语的精准定义。
1. 术语定义
虽然“数据”、“信息”、“证据”等词汇经常被用作可以互换的术语, 实际上其含义却大相径庭。数据通常理解为一些事物或过程的原始测量值。它们本身是毫无意义的,只有当我们就被测量事物以及测量方法添加上特别的诠释后才成为信息。这些信息经过分析和综合才最终变成证据,进而用来指导决策。换句话说, 仅仅有数据是不够的, 即使是巨量的数据,我们需要的是证据, 只有证据才能用于回答科学和临床的问题。
我们谈到“真实世界的数据”或“真实的证据”时,又意味着什么呢?
通常发生在严格控制的环境中的临床研究,可能并不能反映在医疗保健系统之外的普通病人的护理情况和日常生活。进一步说,那些参加临床试验的病人是根据预定的标准精心挑选的,可能排除了许多其他患者,特别是那些有其他疾病、服用其他药物、或不能前往临床研究机构的病人。换句话说, 从这些研究中收集的数据,可能不能反映“真实世界”中许多病人的状况和医务人员的实践,而这些问题可能会导致我们在理解评价医学治疗的有效性和安全性时存在重大局限性。临床医生和患者必须能够认识到临床试验结论存在的局限性问题,即将所控制的环境中完成的将某些患者群体排除在外的临床试验研究的结论,因此对他们的专业和个人经验是一个很大的挑战。因此,一个包括更全面和更多样化的个人和临床环境的临床研究将最终产生更好的科学证据以用于对医疗产品的使用和治疗作出决策。
同样,即使“真实的证据”也有自己的问题,必须认真理解和处理。首先,“真实世界”可能被误解为与绝对正确有更紧密的关系,或者说真实世界的测量比控制环境的测量更有优势。例如在“真实世界”中从一个人的个人设备或健康应用程序测量的血压比在医生的办公室测量的更好(或更可靠和更准确) 吗?它或许可能是病人在访问医生期间血压出现异常升高也未可知。同时,我们又知道多少用病人自己的仪表测定的数据是准确的呢?病人测量血压的方法正确吗?有没有受其他因素的影响?用它真的可以产生证据吗?我们已经认识到依赖于有目的的收集数据的复杂性远比预期的最初的目的要大许多。
在大多数情况下,“真实的证据”被认为是已经收集数据的反映,例如研究人员做综述和回顾性分析的流行病学或队列数据。另一个感兴趣的问题是随机试验是否可以在这些“真实世界”的环境中进行。在对治疗方法作比较时,必须考虑到治疗方法虽不是随机分配,但却仍可反映了一些有关病人的可能特点。当然, 正因为如此,要做随机临床试验。
2. 寻求复杂问题的更好术语
从临床研究人员、医师和病人收集到的数据源对提高医疗服务的质量、安全、效率具有巨大的潜力。但当我们在努力理解影响深远的技术变革的承诺和局限时,我们需要更加务实地来谈论这些复杂的主题, 应当能够让我们以多维度的方式有目的地(例如,能适当地用于监管决策)从多方面去把握“真实的证据”,即来源于从真实病人的多样性的实际体验收集到的数据衍生的证据,代表了从根本上更好地理解疾病和健康的重要一步。在我们开始采纳“真实世界的数据”到我们创建科学证据的过程中时, 我们开始认识到并有效地去解决他们所带来的挑战,我们可能会发现我们获得的答案的质量将在很大程度上取决于我们是否能够用一种有意义的方式去提出问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14