
精准医学之贝瑞和康基因组“大数据之路”
自基因测序技术被发明以来,建设人类基因组数据库一直是各国基因组研究中心的核心内容之一,人类基因组数据库的宗旨是为从事人类基因组研究的科学家和医护人员提供人类基因组信息。目前国际上人类基因组数据大多来源于西方白种人,然而不同人种的进化差异会导致明显的易感基因差异、特异性位点突变频率不同、基因突变表观差异等,因此在我国分子诊断与精准医学飞速发展的背景下,建立高质量的中国人群基因组数据库已经成为当下制约分子医学发展的重要壁垒。今年两会上,委员也建议应尽快建立精准医学资源库,整合共享医疗大数据,促进精准医学更好的发展。
贝瑞和康作为致力于将高通量测序技术实现临床转化的行业领导者,早在2015年8月14日宣布与云计算服务平台提供商阿里云达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。该项目由美国贝勒医学院、现任职贝瑞和康CIO的于福利教授牵头,参与“神州基因组数据云”项目的研究人员达到了100多人,由医学、分子生物学、遗传学、计算机编程等研究领域的博士组成。项目组分成三个团队,一个是贝瑞和康的研究团队,一个是于福利在贝勒实验室的团队,另外一个则是专门做高性能运算的阿里云团队。
神州基因组数据云,是一个知识密集型项目。
阿里云拥有批量计算服务的强大能力,贝瑞和康则深耕基因检测多年已积累超过百万人群基因组数据,此次选取其中四十万人份数据作为“神州基因组数据云”项目的第一阶段数据,旨在借助云计算对该数据资源进行深入挖掘,进一步揭示中国人群遗传突变分布,提升中国人遗传疾病诊断的效率和精准程度。
当基因测序成本迅速下降以后,拥有数据量的多少不再是行业里唯一的竞争优势,而是否能够将海量的大数据进行解读,转换成具体能够应用的有效信息,才是测序企业发展的核心竞争力。光有云计算能力和基因组数据还不够,分析和注释技术是能否达成项目目标的内在核心驱动力。该项目发布一年后,也即2016年8月24日贝瑞和康公布了为基因数据分析开发的两大核心专利技术:Verita Trekker®变异位点检测系统和Enliven®变异位点注释系统。
Verita Trekker®经过严格的基因型质量控制,SNP 检测的灵敏度达99.00%,特异性达99.99%,真阳性率达99.90%;Indel 检测的真阳性率达88.00%;家系样本基因型真阳性率大于99.90%;各项指标均属国际业界一流水平。而Enliven®则通过统计学计算和文本挖掘方法整合国际权威的超过50个数据库和预测算法,其中也包括“神州基因组数据云”项目所产生的中国人特有基因信息数据库。同时,支持千万篇文献的即时查找,全面覆盖基因、变异、表型、疾病信息,参考权威文献、美国医学遗传学学会(ACMG)标准与实际基因型-表型对应,在这样完善的体系和先进的算法的保障下,能够出具可靠的变异致病性结果,为科研工作者和临床医生更好的研究和制定精准医疗方案提供帮助。
在Verita Trekker®和Enliven®两大核心技术共同驱动下的“神州基因组数据云”项目取得了阶段性的重要成果。2016年9月8日,贝瑞和康已完成世界首个中国人群基因组数据库建设,填补了国际基因数据库中缺少中国人群特有基因组数据信息的空白。
同年9月23日,在第十九届全国临床肿瘤学大会暨CSCO学术年会上,贝瑞和康进一步展示了该项目的重要成果应用。这其中包括与北京大学肿瘤医院解云涛教授合作的“中国人遗传性乳腺癌基因突变图谱项目”,以及中国40万人基因组大数据项目在临床应用层面上所取得的阶段性成果,结果显示中国人乳腺癌基因突变和其他人种相比具有显著性差异。
项目由解云涛教授和于福利教授共同展示,可以看到采用Enliven®变异位点注释系统对美国国家卫生研究院的相关项目中的BRCA1、BRCA2基因的2152个位点进行注释,将注释结果与以往报告结果对比,PPV(阳性预测值)达到99.3%,充分验证了Enliven®注释和解读能力的准确性。在此基础上,贝瑞和康将自建的中国人基因组数据库与万例妇科肿瘤患者的基因数据进行整合,建设成为全球最大的妇科肿瘤基因组数据库。
现在,神州基因组数据云项目仍在进行中,中国人群的基因组大数据正在成倍累积增长。受益于测序成本下降,降低获得大量数据的难度,因此只要在数据解读能力上快速突破,中国非常有可能在生物基因信息解读这一领域实现弯道超车。
“神州基因组数据云”项目的另一层意义则与我国医疗政策中正在力推的分级诊疗政策息息相关。通过与专家合作,大数据体系为90%以上的医院提供解读能力,这将对基层临床产生重要的指导意义。可以想象,在三四线城市,医生利用该数据云平台分析基因测序数据,在当地可以获得同样质量的检测分析,获得和在大城市大医院同等质量的报告,就能够进一步促进实现分级诊疗。于福利教授展望道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15