京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读2017中国大数据企业排行榜V3.0
首席数据官联盟发起人刘冬冬先生解读:2017年《中国大数据企业排行榜》V3.0已经是《中国大数据企业排行榜》的第三次更新了,第一版是2015年底发布的,一经发布就在中国大数据业界引起了很大的反响,众多知名企业高管、政府领导都强烈致电要求我们持续推出,帮助政府和企业快速的筛选大数据供应商以及帮助政府招商引资;
因此在业界专家们的支持下我们去年发布了第二版,未来我们将每半年发布一次中国大数据企业的排名更新,更好的服务于使用大数据的政府和企业。从去年第二版开始,我们发布排行榜的同时也推出了一系列相关报告,包括《中国大数据企业排行榜》、《中国大数据产业地图》、《中国大数据业产业分析》、《大数据企业评价指标》等。其目的在于使更多政府和传统企业能够更全面、更快速的了解中国大数据行业的发展。
每次的排行榜都凝结了首席数据官联盟专家组上百位专家们共同智慧,从产业发展分析到产业地图,再通过严格的评价指标体系(采用国家创新型企业的三级标准26个维度),最终得出本次排行榜。此次排行榜同时也得到了我们的同行,例如:中关村大数据产业联盟、中国大数据产业应用协同创新联盟、中国西部互联网大数据与产业联盟、西南大数据联盟、重庆大数据产业联盟、西北大数据产业联盟、南京大数据产业联盟、中国数据共享公约组织、深圳市大数据研究与应用协会等领导的认可,还得到:央企CIO联盟、华南CIO联盟、西南CIO联盟、西北CIO联盟、七邦CIO联盟、深圳CIO联盟、数据架构师联盟、Pentaho中国、China Hadoop Summit、海数据社区、Spago86社区等众多个知名组织专家们的支持。
本次出席发布会的大数据产、学、研、用代表:北京大学电子政务研究院副院长杨明刚、中科院计算机研究所博士生导师罗平、中国钢铁集团信息管理部总经理李红、中国黄金珠宝公司信息管理部总经理周韩林、三一重工流程信息化总部战略总监文博武、中华网创新业务总监熊锦华、中关村大数据产业联盟秘书长赵国栋等领导;往届代表:北京理工大学大数据搜索挖掘实验室主任张华平、中铝公司信息管理部副总文欣荣、达晨创创投大数据负责人窦勇、北京信息化协会副理事长马小东、China Hadoop Summit创始人何建军、宏碁电脑营销总经理黄峻涛、阳光信保数据开发部总经理安光勇等。
从覆盖面上讲,本次排名对近1100家大数据公司进行了考察。排行从41个应用领域、10个行业领域、13个智慧城市领域和8个大数据周边服务领域,总共64个细分+8个服务领域全面对国内大数据企业进行相对全方位的细分与展示。本次我们新增8个垂直行业和领域,并更新、调整了2个行业和领域分类。本次上榜企业共252家,其中同时在3个以上细分领域上榜的企业有13家,同时在两个细分领域上榜的企业有31家。
与2016年7月份发布的《中国大数据企业排行榜 V2.0》相比,本次新上榜大数据企业84家(占本次排名企业的33.3%),149家企业连续两次(去年和今年)上榜(占本次排名企业的59.1%)。只有107家企业排名与去年排名相同(占本次排名企业的42.5%)。共有9家企业因并购、股东变化、公司扩张、改制等原因,其公司注册名称发生了变化。还有64家企业出榜单上退了下来(占本次排名企业的25.4%),但这并不意味企业本身出了问题,而是其业务发生了变化,以及排行的细分领域也进行了优化等原因。另外,大数据行业的蓬勃发展,也吸引了大量的资本方和各行业的龙头企业(BAT等),因此原先以技术为主的大数据行业的游戏规则也发生了不少变化。背靠互联网龙头企业、资本方的所谓“新型”企业,以及各家上市公司依靠强大的资本实力和人力资源迅速代替了原先的企业。
通过本次行业排名,我们再次体会到了大数据行业迅猛的发展速度,而这些迅猛的变化大大提高了我们排名的难度。但同时经过近两个月的努力,我们也获得了许多非常宝贵的行业第一手资料。
从考评方法上讲,我们在国标体系的基础上完善了我们的评价指标。指标分成4个一级指标,包括评价企业的技术能力、健康度、创新驱动能力和它的知识产权能力。4个一级指标分成9个二级指标和26个三级指标组成。而在三级指标的设计上,我们全部采用了相对指标体系,以更真实反映企业活动的效率。因为大部分企业还是中小微企业,成立时间短,且体系不够完善等特点,但却具备了大企业所没有具备的创新能力和灵活性。而这些能力很难在财务指标中迅速体现出来,也不能准确地评价这些大数据企业的真实、客观的能力。
数据源:全部来源于政府部门和第三方权威机构的公开数据。而首席数据官联盟本身就有一大批大数据专家,包括舆情领域的专家。我们通过对社交等互联网数据的分析,侧面地获得了支持主观变量的数据。
另外,因资本方和具备资金实力的龙头企业的加入大大影响了整个排行榜,我们专门对资本市场进行了深度分析。通过分析我们发现:
1. 投融资主要集中在A、B、C轮;
2. 对于大数据行业,投资方更看重技术领域,把主要的资金投入到技术领域;
3. 同时投资也逐步往垂直行业延伸,如:金融、医疗、汽车等领域;
4. 一直处于大数据应用前沿的电商大数据应用并没有得到资本的青睐
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16