
互联网金融还是大数据金融
近来,颇有几个新名词在市面上流行,诸如“互联网金融”,“信息消费”之类。这些新名词并非产自概念日日翻新的互联网业,却来自传统金融业甚至政界,其气势之大,梦想之美,内涵之广,投入之多,逻辑之混乱,可行性之差,似乎值得一辨。
就概念而言,从众说纷纭中大致可以概括出互联网金融的几层含义:
一是传统金融服务的网络化,例如网络银行,网络券商,网络保险,等等。这些都是古已有之的东西,只不过在中国实现较晚,动作较慢而已。事实上,互联网在美国最早最成熟的商业模式就是这一套,二十多年前就已出现并蓬勃发展至今。不过,无论在金融服务业还是在网络业,都没有什么公司因此脱颖而出,其原因无非是家家都做,没什么创新,最好的结果是获得摊薄的平均利润。为此今天再创一个新概念毫无必要。
二是传统金融服务的扩展化,例如小额支付,小微企业信用调查,小额贷款,灵活机动的市场营销,等等。这些事情在互联网出现之前,做起来费时费力,成本太高而收益太少,如今利用互联网就可以顺利实现。做这些事情也许可以创些收,但很难提高利润率,因为是个琐碎活。为此带上个互联网金融的大帽子有点言过其实。
三是全新的网络金融服务和产品,例如众筹投资和比特币。这些东西新则新矣,但属于小众市场和缝隙市场,不值得大动干戈,更不值得为此创立什么新概念。
四是全面的网络金融服务,或曰金融电商,例如金融商城和各类产品和服务的综合大卖场。这种模式以金融服务为基础,以阿里为样板,再掺杂以WEB2.0,云计算,移动互联网和大数据等时髦互联网概念,几乎是一个通吃的全面互联网服务平台,仅仅称之为互联网金融显得有点包容不住,过于狭窄了。
无论是单独拿出来看,还是把这四层意思合起来看,互联网金融这个概念从互联网业的角度看毫无新意可言。如果只从传统金融业的角度考量,互联网金融的概念也不是完全不能成立,但只有把它与非互联网金融服务或传统金融服务对立比较才有意义,但这好像也不是鼓吹这一概念者的本意。
过去若干年来,互联网业在不断创新中,蚕食着许多传统产业的世袭领地,同时创造出不少财富传奇。面对这一发展,传统金融业者一则以喜,二则以忧。喜的是互联网开拓出广阔的新边疆,金融服务有了更多更有力的方式向用户提供更多更好的产品和服务;忧的是金融服务有了新人,弄不好会砸了传统业者的饭碗。于是,在贪婪与恐惧的双重动力作用下,以攻为守的思路油然而生。既然一无所有的网络业者都可以尝试网络金融服务并大有斩获,那么传统金融业者有经验,有资本,有垄断,有用户,为什么不能后来居上呢?一个明显的区别在于,网络业者早在十数年前就开始了尝试,那时网络金融服务是被斥责,被打压,被怀疑的对象,历尽千辛在服务模式,商业模式和技术壁垒方面有所心得,垒起了一定的竞争门槛。而今天再做所谓互联网金融这种早已成为社会共识的东西,如果在差不多的时间内出现十个八个互联网金融服务平台,自相残杀还来不及,那还有气力与遥遥领先的网络业者竞争?别人贪婪我恐惧,别人恐惧我贪婪,巴菲特的警句值得谨记。如果别人贪婪我亦贪婪,相互抵消,结果为零。
如今世界正在步入大数据时代,为后来者提供了不可多得的战略空间和机会。当世界的万事万物都在化为数据存在,当各种产品和服务都已网络化和数据化,当五花八门的数据终端普及进入千家万户,是否以自己为中心提供各种网络服务已经变得没有过去那么重要,而获取和利用他人服务所产生的数据变得更加重要。基于某种服务所积累的数据价值在贬值,数量再多也算不上大数据,只有获取网络世界中全面的数据才有深度整合利用的价值。正因如此,传统金融服务商就大可不必邯郸学步,重复互联网运营商走过的道路,非要先建立各种非本业服务以获取本业之外的数据。
传统金融业者可以利用自身优势探索一条新路。与其他传统产业相比,金融服务业是电子化,网络化和数据化程度最高的产业之一,也许仅次于网络业和电信业。由长期系统的金融服务积累的数据完全可以在确保用户隐私和商业机密的前提下,与各行各业通过数据间的共享,交换和买卖以生成大数据,在此之上探索全新的产品和服务。当然,这样的战略就很难称之为互联网金融了,互联网金融这种概念从提出之日起就至少落后于产业发展前沿五年以上。使用大数据金融的概念,制定并实施大数据金融战略,更能体现金融业自身的实力和潜力,也更能与网络业及其他行业有机融合,平等竞争,在大数据时代找到自身生存发展的机会也更大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14