京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中的几类高效函数
在执行R语言任务时,一个提高执行效率的思路就是尽量避免使用循环语句,否则你的工作将变的缓慢低效。事实上,我们是可以有办法使用一些较高级的函数来尽量避免使用循环工作的。下面本文将介绍常见的几种高效函数。
目录
1.apply函数
2.lapply函数
3.sapply函数
4.tapply函数
5.sweep函数
6.column函数和row函数
1)apply函数
apply函数主要应用在一个数组或者矩阵上,通过给定的函数,并根据指定的计算方向(按行或按列),以该方向的数组为输入对象,反回计算结果,并将结果存储于一个数组或向量中。
apply(array, margin, function, ...)
首先定义一个矩阵data
data <- matrix(rep(seq(4), 4), ncol = 4)
data
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
#先根据行求和,其中1为指定按行计算(1为行,2为列),sum为指定的function
apply(data, 1, sum)
[1] 4 8 12 16
#根据列求和,其中2为按列计算
apply(data, 2, sum)
[1] 10 10 10 10
#使用自定义函数,首先定义函数myfun
myfun <- function(x){
+ sum(x) + 2
+ }
#根据自定义函数,使用apply函数计算
apply(data, 1, myfun)
[1] 6 10 14 18
#自定义函数还可以写在apply函数内部,不过需要注意,没有大括号
apply(data, 1, function(x) sum(x) + 2)
[1] 6 10 14 18
#更通用的,可以将函数写出如下形势
apply(data, 1, function(x, y) sum(x) + y, y=2)
[1] 6 10 14 18
2)lapply函数
lapply用于对给定的数据,分别对其中的元素按指定的函数计算,并返回一个list。对于数据框来说,lapply函数显得极为友好,在data.frame中,每个变量可以看做是一个元素,因此lapply应用于data.frame时,可以同时对所有变量按指定函数进行计算。
#首先构造一个数据框
data.df<-data.frame(data)
> data.df
X1 X2 X3 X4
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
#对数据框所有变量进行求和,返回每个变量的结果,存储形式为list。
lapply(data.df, sum)
$X1
[1] 10
$X2
[1] 10
$X3
[1] 10
$X4
[1] 10
#此外,还可以将传入的函数改成自定义的函数。要注意,函数形式没有大括号。
y1 <- lapply(data.df, function(x, y) sum(x) + y, y = 5)
y1
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
#使用lappy代替循环函数
unlist(lapply(1:5, function(i) print(i) ))
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 1 2 3 4 5
#对比一下for循环结果就算结果,发现是一致的
for(i in 1:5) print(i)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
3)sapply函数
sapply函数与lapply函数类似,主要输入的参数都是数据和函数,但sapply与lapply不同的是sapply返回的是向量,而lapply返回的是一个list。并且sapply还存在第三个参数simplify,当silmplify为FALSE时,那么sapply返回的结果和lapply一致;当silmplify为TRUE时,sapply返回的结果为一个向量或者矩阵;此外还可以设定其它格式。
sapply(list, function, ..., simplify)
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5)
y
X1 X2 X3 X4
15 15 15 15
is.vector(y)
[1] TRUE #返回的结果是一个向量
#定义simply=F,此时返回的结果胃list,效果和apply一样。
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5,simplify = F)
y
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
class(y)
[1] "list"
is.list(y)
[1] TRUE#返回结果为list
4)tapply函数
tapply用于对数据进行分组计算,类似于SQL中的group by。tapply需要传入三个参数,第一个是数据,第二个是数据的分组,第三个参数是指定的计算函数。
data.df<-data.frame(x=runif(10),group1=rep(1:5,2),group2=rep(1:2,5))
data.df
x group1 group2
1 0.68180046 1 1
2 0.72726914 2 2
3 0.33735976 3 1
4 0.48212394 4 2
5 0.04234556 5 1
6 0.88701919 1 2
7 0.53946995 2 1
8 0.01295496 3 2
9 0.47062069 4 1
10 0.87079649 5 2
tapply(data.df$x, data.df$group1, mean)
1 2 3 4 5
0.4926077 0.7726152 0.6058755 0.6110971 0.3074988
#此处还可以传入两个分组的计算结果
tapply(data.df$x, list(data.df$group1,data.df$group2), mean)
1 2
1 0.68180046 0.88701919
2 0.53946995 0.72726914
3 0.33735976 0.01295496
4 0.47062069 0.48212394
5 0.04234556 0.87079649
5)sweep函数
sweep函数用于对给定的输入数据做批量的计算,主要参数有数据、统计方向、计算参数、计算函数。其中统计方向可取1或2,取1表示在行的方向上计算,2表示在列的方向上计算。计算函数为加减乘除等算是,默认为减法'-'。
data<-matrix(runif(20),5)
data.df<-data.frame(data)
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#将数据按行计算,每行分别减去各行的最大值
sweep(data.df,1,apply(data.df,1,max),'-')
X1 X2 X3 X4
1 -0.343414887 0.0000000 -0.2474544 -0.3146792
2 -0.006792557 -0.5988633 0.0000000 -0.2236865
3 -0.829278179 -0.7591426 -0.1300467 0.0000000
4 0.000000000 -0.5872305 -0.3340842 -0.7035627
5 -0.159630747 0.0000000 -0.4788858 -0.3059571
6)column函数和row函数
还有一些函数也是基于行和列进行统计计算的,如对列进行计算的有colMeans和colSums;对行计算的rowMeans和rowSums。
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#对列求平均
colMeans(data.df)
X1 X2 X3 X4
0.4754511 0.3542271 0.5051802 0.4336973
#对列求和
X1 X2 X3 X4
2.377256 1.771135 2.525901 2.168486
#对行求和
rowSums(data.df)
[1] 0.8380414 2.5215068 2.2326058 1.8326183 1.4180059
#对行求平均
rowMeans(data.df)
[1] 0.2095103 0.6303767 0.5581515 0.4581546 0.3545015
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09