京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年数据科学发展中值得一入的坑
在数据科学领域,大数据和物联网正在持续快速增长着。目前的商业中已经逐渐可以把不同来源的数据拼凑在一起,并获得更多的信息,这也就意味着数据将变得更有意义。在开发新的商业模式和获得增长的过程中,使用数据已经变得越来越重要。世界各地的企业都在寻找一些可以利用数据进行商业化并从中获利的方式。接下来就是我们在2017年的数据科学界可能看到的现象以及数据科学怎样影响我们。
技术需求上的改变
机器学习曾被特斯拉的Elon Musk称之为“被召唤的恶龙”,但到如今,这个词还是以高频率被提起。亚马逊、Facebook、谷歌都已经加入了人工智能的竞赛中,在2017年,更多的商业模拟将会吸引到更多的机器学习数据科学家来增加他们各自部门实力。
但是对于相应工作的竞争可能也会更激烈一些。当你发现机器学习已经成为数据科学中的一个职业时不要惊讶,从2017年起更多的学校将会将人工智能列入他们的课程中。如果你想保持在这一浪潮最前列,那么这里有一些机器学习和人工智能相关证书可以供你获取。然而这里的课程都价格不菲——通常要10,000美元,相似的这些内容在一些训练课程网站如Coursera或者edX都相对比较便宜或者是免费的。
2016年,数据科学家最需要掌握的技能
为了在数据科学领域获得成就,其他的你还需要拥有的技能包括强大的技术和编程知识,尤其是使用R语言或者Python,还有SRS和MATLAB的经验也是非常有用的。
此外,你还需要习惯于使用关系数据库的工作,因此SQL也是非常重要的。在2015年,从领英上列出的工作列表中,SQL被列为最重要的技能。当然,Hadoop、Python和Java也是非常重要。
物联网和数据科学的结合
数据科学和物联网经常被看成是一个硬币的两面。
由于数据科学总是寻找数据和实时设备的接口从而实现先进的数据据分析,甚至用于决策,因此,在2017年,这两个行业将会走的越来越近,甚至合并在一起。
那么这一点如何实现呢?考虑一下一下场景。在不远的将来,你可能不需要钥匙来进入你的家门,当你走到门口的时候,它会感觉到你的存在,并自动为你开门。同时,当你离开的时候,它将会让家里的所有能量单元关掉——反而节省主人的钱。
这可能听起来像是进取号战舰(电影《星际迷航》中战舰)中的场景,但是我们也许在2017年看到这些场景都将开始发生——而且你要确定你有能力来投入在这些项目中。
人工智能、数据科学等对于物联网的影响,意味着你要能够处理无线接口层、不同设备、边缘处理、实时系统和深度学习等领域的工作。
不断发展的大数据技术
我们已经看到了在2016年天文数字般的增长,但是在下一年,随着大数据越来越普及并不断被企业所接受使用,大数据的预算还会继续增长。大多数企业也意识到了他们需要改进该领域的商业模式,这也就意味着需要更多的数据科学家来获取并处理大量的额外数据。
如果你想要寻找一个数据科学的职位,大数据的知识和数据框架是非常重要的。你尤其需要看看 ApacheHadoop,HDFS,Hbase,Spark,Stom,Solr和Kafka.
由大数据引领的医疗行业
数据科学已经在控制流行病和预测病人行为等方面发挥了重要作用。2015年,数据科学帮助预测了西尼罗病毒在美国的爆发,并达到了85%的精度。而且在今年早些时候,一个科学家团队开发了一个可以预测蝙蝠携带埃博拉病毒的模型。期待着2017年数据科学在医疗行业的进一步应用,并希望医疗行业能够不断找到更好的方式来满足日常需求和拯救生命。
随着电子医疗记录仪记录数据量的增加,我们所处理的数据已经达到历史最高水平。尽管大量的数据有他自身的有点和缺点,但是对于数据科学家而言这里存在着巨大的商机,期待他们在2017来破解这些数据的秘密,如果你正在寻找一个新兴市场,那么医疗行业就是了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28