京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以前分享的 二项logistic回归分析案例 非常受欢迎,在实际应用中,可能还会碰到因变量是多个分类的情况,并且不包含排序信息。比如视力分为轻度、中度、重度三个水平,此时如果想考察与视力评价有关联的指标,常用的二项logistic回归已经无法胜任。
幸好,SPSS软件为我们提供了多项logistic回归。
logistic回归对数据的要求
因变量:分类变量,要求是(含)三个以上分类水平;
自变量:可以是分类变量或连续变量,建议是分类变量;
协变量:必须是分类变量。
概念什么的,先不说,即使说,我也说不清楚,看了案例自然就了解了。用SPSS学统计的好处就是这,辣眼睛的统计原理可以通过案例实践来逐步理解掌握。
案例数据
该假设数据文件涉及一份880人参于的关于早餐喜好的民意调查,该调查记录了参与者的年龄、性别、婚姻状况以及生活方式是否积极,每个个案代表一个单独的响应者。
调查机构想搞清楚是什么影响着受访人每天吃什么早餐。因变量“早餐选择”包括(1=早餐摊点、2=燕麦类、3=谷物类),自变量暂定年龄、婚姻状况以及生活态度。
分步骤说明
菜单栏中依次选择【分析】【回归】【多项logistic】,打开主面板。
因变量、自变量分别按照箭头指示移入对应的变量框内,然后最为重要的是,点击【参考类别】按钮,默认勾选【最后一个类别】。
什么意思呢?大意是指以因变量和自变量的最后一个分类水平为参照,用其他分类依次与之对比,考察不同水平间的倾向。
主面板中,点击【模型】按钮,打开【多项logistic回归:模型】对话框,勾选【主效应】,本例主要考察自变量年龄、性别、婚姻状况的主效应,暂不考察它们之间的交互作用,然后点击【继续】。
主面板中,点击【统计】按钮,设置模型的统计量。主要【伪R方】【模型拟合信息】【分类表】【拟合优度】这几项必选,其他可以默认不勾选。这些参数主要用于说明建模的质量。
主面板中,点击【保存】按钮,勾选【估算响应概率】,我们要求SPSS软件帮我们估算每个个案三类早餐的概率。
其余的参数主要和逐步回归有关系,本例采用主效应模型,人为指定进入模型的自变量,在其他研究中,可以根据情况选择逐步回归。
下主面板底部点击【确定】按钮,软件开始执行此处建模。
多项logistic回归结果解读
个案处理摘要表,列出因变量和自变量的分类水平及对应的个案百分比。建议在此表主要读取变量分类水平的顺序,比如自变量“年龄段”,第一个分类是“低于31岁”,第二个分类是“31-45”,第三个分类是“45-60”,第四个分类是“60岁以上”,尤其是看清楚最后一个分类,因为我们前面参数设置时要求是以最后一个分类最为对比参照组的。谁和谁对比,一定要搞清楚。
模型拟合信息表,读取最后一列,显著性值小于0.05,说明模型有统计意义,模型通过检验。
拟合优度表,原假设模型能很好地拟合原始数据,最后一列皮尔逊卡方显著性值0.952,概率较大,说明原假设成立,模型对原始数据的拟合效果良好。
伪R方表,依次列出的3个伪R方值(类似于决定系数)均偏低,最高0.4,说明模型对原始变量变异的解释程度一般,还有一部分信息无法解释,结果不算好。
模型似然比检验表,我们能看到最终进入模型的效应包括截距、年龄、婚姻状况、生活态度,而且最后一列显著性值表明,三个自变量(影响因素)对模型构成均有显著贡献,研究它们是有意义的。
参数估计表,列出自变量不同分类水平对早餐选择的影响检验,是多项logistic回归非常重要的结果。
第二列B值,即各自变量不同分类水平在模型中的系数,正负符号表明它们与早餐选择是正比还是反比关系。第六列是瓦尔德检验显著性值,此值小于0.05说明对应自变量的系数具有统计意义,对因变量不同分类水平的变化有显著影响。
比如,早餐摊点和谷物类早餐相比,31-45岁的年轻人更偏向于选择在早餐摊点吃早餐,这种可能性是60岁以上人的3.7倍;燕麦类和谷物类早餐相比,结婚与否对早餐的选择没有差别。
除此之外,我们前面还要求软件保存了每个个案早餐选择的概率,返回数据编辑器窗口,具体来看结果。
原始数据最右侧新增3个变量,依次为EST1_1、EST2_1、EST3_1,分别对应因变量“早餐选择”的三个分类水平(早餐摊、燕麦类、谷物类)的响应概率。比如第一个个案,他选择谷物类早餐的概率为0.55,在三种选择中数值最大,因此,模型会判定他选择谷物类早餐,这和原始记录的真值一致,说明模型判断准确。
当然,SPSS软件也输出了模型预测分类表,如下所示。
模型在预测燕麦类早餐选择倾向上准确率最高,达到77%,其他两个早餐选择的预测略低,模型总体预测准确率为57.4%,表现一般。前面伪R方数据显示,模型对总体变异的解释能力不足,这和总体预测准确率结论也一致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29