京公网安备 11010802034615号
经营许可证编号:京B2-20210330
创新大数据时代网络舆情引导
大数据时代,网络舆情产生速度快,数据体量大,而且异常复杂。在新的网络舆情环境下,我国的网络舆情引导受到了前所未有的挑战,同时大数据也为网络舆情引导带来了新的机遇。在新形势下,应积极树立大数据理念,深入挖掘和合理利用大数据在网络舆情引导中的价值,创新网络舆情引导思维,抓住网络舆情的本质特征,探索网络舆情演变的内在规律,尽快建立起适应新形势的网络舆情引导机制。
分析海量信息
预测发展趋势
大数据使网络舆情预测成为现实。对已经出现的网络舆情予以监测,这是网络舆情引导的传统做法,也是以往网络舆情管理的起始。但是利用大数据技术,可以对网络舆情中具有关联的数据进行挖掘并加以分析,使敏感信息在网络上传播的初始阶段就被监测到。在此基础上通过模型对网络舆情变化趋势进行仿真,使网络舆情预测成为现实。
大数据使网络舆情分析更为全面。实现网络舆情预测,至关重要的是对数据的相关性进行全面分析。而在传统的网络舆情引导中,由于数据库的缺乏和计算分析能力有限,往往难以全面分析网络舆情,得出的结论也有失偏颇。大数据环境下,对网络舆情的分析由静态化向动态化转变,由片面化向立体化转变,由单一化向全局化转变。利用大数据技术解构海量信息,并对这些信息加以重构,对网络数据的相关性进行深度挖掘,可以全面科学地分析并预测网络舆情的发展趋势。
大数据使网络舆情实现量化管理。使网络舆情得以量化,是利用大数据对网络舆情进行科学预测的前提。网络舆情信息量巨大,而被挖掘出来的网络舆情信息需要进行量化,在此基础上再建立数学模型对信息数据进行计算和分析。数据的量化指的是数据是可计算的,一是在密切关注网民态度与情绪变化的同时对其采用量化指标加以标识,二是对网络言论所持某一观点的人群数量进行统计,三是透过网络信息文字内容来对网民互动的社会关系网络数量进行统计。
大数据使网络舆情相互关联。网络信息是网络背后的网民所传达出来的信息的集合,因而对网络数据进行研究,实质上是对由人所组成的社会网络进行研究。要实现网络舆情预测,离不开对网络舆情之间的关系进行关联这一尤为重要的大数据技术。在大数据时代,每个网络数据都被看作是一个节点,能够在舆情链上与其他关联数据不受限制地产生乘法效应,这种关联如同数据裂变,会扩大至全体网络数据,使舆情分析更为准确。
加强技术支撑
储备新型人才
重构大数据时代网络舆情引导战略。牢牢把握新契机,充分发挥大数据所具有的不可比拟的优势,重构大数据时代网络舆情引导战略。在大数据技术的帮助下不断提高网络舆情引导的预见性,进一步增强网络舆情引导的目的性。通过数据分析来了解网民群体的言论和心理特征,预测网络舆情变化趋势。加强政府网站建设,针对网络舆情特征有针对性地加以引导。挖掘数据信息,对数据的价值进行转化,使网络舆情引导的价值得以实现,使网络舆情引导具有更高的公信力。发挥主流媒体的作用,积极与社会公众进行沟通,使网络舆情引导及时有效。
积极创新网络舆情引导技术与手段。利用大数据有效地进行网络舆情引导离不开先进技术的支撑。一方面,掌握数据处理与分析等各种技术软件的应用,有效利用各种大数据技术平台实现网络舆情的分析、预测与引导。另一方面,应积极完善各项技术,创新对网络数据进行监测、挖掘、存储与分析的各种技术,对数据安全也应利用新技术进行维护。同时,大数据时代的网络环境更为复杂,网络舆情引导的难度加大,除了创新教育引导等手段,还需要通过法律等强制性手段进行规范。只有不断创新技术和手段,才能应对不断变化的网络舆情形势,保障网络舆情引导工作顺利开展。
大力培养网络舆情引导新型人才。在大数据时代,网络舆情引导急需高素质的新型复合型人才。为了满足当前大数据时代网络舆情引导对人才的迫切需求,可以采用招考等形式发掘数据分析等方面的高素质人才,采用培训和进修等形式提高现有专业人才的素质。要建立网络舆情引导人才培养的长效机制,对网络舆情引导人才需求进行系统分析,确定人才培养目标。与我国当前的学科专业人才培养体系相结合,培养既具有综合学科知识,又具有较高专业素养的网络舆情管理新型人才,加快大数据时代网络舆情引导人才队伍建设。
尽快完善网络舆情引导体制建设。规范大数据时代网络舆情引导工作,必然要求进一步完善网络舆情引导体制机制。尽快将网络舆情多元化管理的联动机制建立起来。制定大数据时代网络舆情引导战略规划,将产学研紧密地结合在一起,科学统筹政府、社会等多方力量,形成联动机制。网络舆情引导机构的设置应成为常态,并配备适当数量的专业人才,使网络舆情引导工作更加精细化。建立权责清晰的网络舆情引导责任机制,通过相关立法将网络舆情引导各部门的权利和义务予以明确。尽快完善相关保障机制,为大数据时代网络舆情引导提供有力的资源保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27