京公网安备 11010802034615号
经营许可证编号:京B2-20210330
可穿戴设备的大数据价值仍待释放
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户黏性。PC互联网时代促成了商业的繁华,与工业时代的最大区别就在于用户黏性减小,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网时代,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户黏性,也就是说基于智能手机的移动互联网更深一步地与用户之间具有了黏性。
如果用一句话来形容,也就是说PC互联网的用户黏性是按小时计算,而移动互联网的用户黏性被缩短到按分钟计算,这种用户黏性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因。而进入可穿戴设备时代,由于人与设备之间实现了更深入无缝的连接,用户黏性从移动互联网的按分钟计算转变为按秒计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天起就一直在争议中不断飞速发展的原因。很显然,我们看到了当其构建的用户黏性被进一步减小之后,所释放出来的商业价值将超越当前由移动互联网带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于黏性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式,其核心价值的大小还是取决于大数据的延伸、挖掘,谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还有一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身,而不是依赖于可穿戴设备的大数据挖掘商业模式。
制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1.数据过于碎片化。由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2.市场普及度不高。由于可穿戴设备是一个新兴的业态,不论业内外,对于可穿戴设备产业都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小。从产品形态层面来看,目前通常局限于智能手表、智能手环。而从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。这种情况也制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3.用户黏性不高。可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用黏性,但从目前的实际情况来看,黏住用户还有一段路要走。其中主要原因是两方面,一方面受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通信等,还是软层面的算法、结果反馈等,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事可穿戴设备产业的技术人才大部分都是从IT或通信产业跨界而来。正是这两方面的因素,导致可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致很多用户在购买可穿戴设备佩戴很短一段时间之后,就直接将其弃置了,这也就意味着开发者所采集的数据难以成为有效、有价值的数据。
当然,影响可穿戴数据有效采集的因素多种多样,上述三方面因素是可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可预料在短时间内还会伴随着整个产业的发展继续存在着,也即此种状况在短期内将难以得到有效的改善。因此,对于可穿戴设备产业的创业者而言,目前距离可穿戴设备大数据价值的梦想还有一段路。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13