京公网安备 11010802034615号
经营许可证编号:京B2-20210330
可穿戴设备的大数据价值仍待释放
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户黏性。PC互联网时代促成了商业的繁华,与工业时代的最大区别就在于用户黏性减小,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网时代,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户黏性,也就是说基于智能手机的移动互联网更深一步地与用户之间具有了黏性。
如果用一句话来形容,也就是说PC互联网的用户黏性是按小时计算,而移动互联网的用户黏性被缩短到按分钟计算,这种用户黏性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因。而进入可穿戴设备时代,由于人与设备之间实现了更深入无缝的连接,用户黏性从移动互联网的按分钟计算转变为按秒计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天起就一直在争议中不断飞速发展的原因。很显然,我们看到了当其构建的用户黏性被进一步减小之后,所释放出来的商业价值将超越当前由移动互联网带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于黏性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式,其核心价值的大小还是取决于大数据的延伸、挖掘,谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还有一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身,而不是依赖于可穿戴设备的大数据挖掘商业模式。
制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1.数据过于碎片化。由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2.市场普及度不高。由于可穿戴设备是一个新兴的业态,不论业内外,对于可穿戴设备产业都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小。从产品形态层面来看,目前通常局限于智能手表、智能手环。而从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。这种情况也制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3.用户黏性不高。可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用黏性,但从目前的实际情况来看,黏住用户还有一段路要走。其中主要原因是两方面,一方面受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通信等,还是软层面的算法、结果反馈等,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事可穿戴设备产业的技术人才大部分都是从IT或通信产业跨界而来。正是这两方面的因素,导致可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致很多用户在购买可穿戴设备佩戴很短一段时间之后,就直接将其弃置了,这也就意味着开发者所采集的数据难以成为有效、有价值的数据。
当然,影响可穿戴数据有效采集的因素多种多样,上述三方面因素是可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可预料在短时间内还会伴随着整个产业的发展继续存在着,也即此种状况在短期内将难以得到有效的改善。因此,对于可穿戴设备产业的创业者而言,目前距离可穿戴设备大数据价值的梦想还有一段路。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31