京公网安备 11010802034615号
经营许可证编号:京B2-20210330
反思大数据新闻的思维逻辑(1)
作为一种技术,大数据只是计算机数据分析技术新发展的一环。但就其对于新闻传播的影响或者意义而言,国内外研究者对大数据的内涵和外延都已进行了从自然科学到人文社会科学的思想跃迁和现象学式的想象,并将其价值和功能无限延宕。笔者认为,所谓大数据新闻传播,实质可视为计算社会科学的一个新发展,它要求新闻发现、生产与传播范式由传统意义上的以经验、理论和计算为中心转变到以数据处理为中心的新范式,这也就是我们所说的用数据思维产制新闻,即电脑化新闻模式,与传统的人脑(或人工)新闻模式相并立。
与传统文字叙述为主的新闻报道相比,大数据新闻主要通过数据统计—数据分析—数据挖掘等技术手段发现新闻线索,并用逻辑化的数据拓展既有新闻主题的广度与深度,最后以图表、数据为主,辅之以必要的少量文字的可视化方式加以呈现,从而致力于新闻报道的客观、系统和可视体验。这种想象和设计十分契合现代科学追求数字化、量化,把一切都还原为数学方程式的思维逻辑。按照这种思维逻辑的设定,新闻文本只要从纷繁芜杂的数据海洋(现象)中找到某种所谓的本质的东西,比如自然科学的公式,那么信息世界就尽可把握了,如是乎?作为一种认知新闻事物的思维程序,大数据新闻认知的普遍性逻辑必然会抽离个别新闻事物的具体性,其特征是一步一步地撇开个体新闻事物身上道德的、功用的、审美的和哲学的等意义,以还原为最为抽象的同一性。这种新闻生产逻辑必然会遗漏与特定本质属性缺乏关联的非本质新闻属性,从而使个别新闻事物的整体形象和全部意义无法得到认知与传播,最终导致大数据新闻的本质和客观性既不能深刻反映社会意义的原型结构,更不能反映超自然的、高位阶的社会信息需求。也就是说大数据本身是一种理性的表现,但还需要更大的理性——人文法则的观照。依据狄尔泰的看法,人文科学乃至生活世界中的客观性,在于解释与反思一系列视域和融贯性内的诸种关系。一般认为,这些意义、关系越融贯为一体,生活世界和人文科学中的客观性便越是客观的、真实的、具体的。对于大数据新闻而言,如何实现这些关系的内在融合,以实现新闻客观性、真实性和具体性之人文内涵,必须澄清当下“大数据”给我们在如下关系领域内造成的混乱。
(一)重普遍性而轻个体性。
对于大数据新闻人文与科学态度的划分,就是以强调个体性还是强调普遍性为基本依据的。因为人文科学强调的是个体性的人生价值意义而自然科学强调的是普遍性的规律。从大数据的实践层面看,一般认为大数据的时代其实是弘扬理性精神的时代,但如果大数据分析和使用在于满足非正义的事情,那么,这正好说明大数据本身不完全等同于理性,更大的理性是人文法则。最后,大数据新闻从自然之物到文化之物的转化过程,实际上就是普遍性本质转化为个体性本质的过程,也是一个由重共同性到重特异性的转化过程。因此,对于大数据新闻中的人物或者事物,我们都既可以从自然科学的角度来分析和报道,也可以从人文科学的角度来分析和报道。至于大数据如何推动社会进步,这种进步的速度有多快,或者进步的同时是否还会倒退,这些都取决于我们自己。
(二)重关联性而轻因果性。
维克托·迈尔·舍恩伯格在《大数据时代》中指出,随着人们看待数据的方式的变化——从局部变为全部以及从纯净变为凌乱,思维方式也应该转型,即从因果关系转向相关性。或者说,只要知道“是什么”,而不需要知道“为什么”。这观点有些类似于休谟怀疑论的知识论。休谟指出,对象之间并没有可以发现的联系,我们之所以能根据一个对象的出现推断另一个对象的存在,并不是凭着其他的原则,而只是凭着作用于想象上的习惯。这里休谟将因果关系归因于一种未经反思的心理经验,认为一切的抽象以及逻辑推理都是这种心理经验的派生物。这种“想象上的习惯”的关联方式无异于这个经典的社会学考题:冰淇淋的销量和强奸案的发生率存在线性关系,即一个增长,另一个也增长。不过,两者之间显然没有因果关系,而只有相关关系。另一个变量,即天气变暖,才是两者之间的真正桥梁。所以,舍恩伯格这种放弃因果关系而只考察相关性的思路,与其说是一种进步,倒不如说是一种思维紊乱。因为它不利于我们消除不确定性而进行下一步预测,也无法采取行动。研究者辨明因果关系并非来自统计,而是来自研究者的理论和假设。但是大数据分析更关注数据的相关性测量和商业应用价值。大数据是发现那些不能靠直觉发现的信息和知识,甚至是违背直觉的,有时候越是出乎意料可能越有商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08