京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和智能电网的关系
大数据技术在智能电网中具有广阔的应用前景,报告从负荷预测、源网荷协同、网架规划三个方面进行论述。
1、负荷波动及新能源出力预测
负荷预测作为电网电量管理系统的重要组成部分,其预测误差的大小直接影响电网运行的安全性及可靠性,较大的预测误差会给电网运行带来较高的风险。现阶段负荷预测主要是通过负荷历史数据,利用相似日或者其他算法预测负荷的大小,短期预测精度较高,中长期精度较差。随着电网采集数据范围增加,利用大数据技术可以将气象信息、用户作息规律、宏观经济指标等不同种类的数据,通过抽象的量化指标表征与负荷之间的关系,实现对负荷变化趋势更为精确的感知,提高预测精度。
分布式发电的不断接入,特别是新能源渗透率的不断增加,打破了原来电网运行管理的模式,不但需要考虑负荷侧的波动,还要计及新能源出力的间歇性。在我国,新能源接入主要受制于两个因素:(1)新能源大多分布在电网末端远离负荷中心,网架结构较为脆弱,从而造成电网接纳能力较弱;(2)新能源预测误差较大,目前风电出力预测日前和实时的误差分别为20%、5%左右,这样就会给电网调度带来较大的挑战。由于新能源较大的预测误差,往往需要在大型新能源基地周边建立配套的大型常规能源作为旋转备用,以弥补新能源预测精度方面的不足。作为备用的常规电源,由于担负着较重的旋转备用,长期不能工作在最佳运行点,将造成其发电效率低以及能源的浪费。利用大数据技术,可以有效提高新能源出力的预测精度,如丹麦的维斯塔斯风力技术集团,在风电出力预测时采用了IBM的大数据解决方案,在风电出力预测时加入了地理位置、气象报告、潮汐相位、卫星图像等结构化及非结构化的海量数据,从而优化了风力涡轮机布局,提高风电发电及预测效率,获得了较为可观的经济效益。
2、源网荷协同调度
利用大数据技术可以有效降低新能源预测误差,但这对于新能源出力固有的波动性,传统的调度方法通过增加系统的旋转备用来解决。在电力市场不断完善的背景下,可以不通过调节常规电源的出力,而是利用市场手段,使得一部分用户主动削减或者增加一部分负荷去平衡发电侧出力的变化,即通过需求侧管理实现系统电量平衡。若要达到网源荷协调优化调度需要大量的辅助信息,如新能源出力波动大小、电网线路输送能力、负荷削减电量的范围、实时电价等,其中每个因素又受很多条件的影响,因此是一个非常复杂的电力交易过程,此时必须利用大数据技术发掘数据内部之间的联系,从而制定出最佳调度方案。智能电网和传统电网最大的区别在于源网荷三者之间信息流动的双向性,三者之间信息在一个框架内可以顺畅的进行交互,极大地提升电网运行的经济性、可靠性。
3、网架发展规划
中投顾问发布的《“十三五”数据中国建设下智能电网产业投资分析及前景预测报告》指出,电网已经从传统电网发展到智能电网,随之将会成为能源互联网的一部分,从而使得电网与整个能源网联系的更为紧密。电转气技术的提出,为新能源接入提供了新的思路,试图将不宜存储的电能转化为便于存储的天然气,但由于转化效率较低,尚属于技术论证阶段。冷热气三联技术实现了能源的阶梯利用,能源利用效率高、环境污染小、经济效益好。电动汽车的兴起将会显著提高能源末端电力消费的占比,充换电站将会像加油站一样分布在城市的每个角落。传统的电网规划数据来源渠道不足,数据分析挖掘能力欠缺,因此造成规划过程中面临着众多不确定性因素的现象,特别是现在新技术不断涌现,能源结构不断发生变革,使得传统的电网规划方法往往与实际需求差别较大。电网规划的过程中,需要利用大数据技术综合考虑多种因素如分布式能源的接入、电动汽车的增长趋势、电力市场环境下为用户提供个性化用电服务等,多类型、海量数据的引入,可以有效减少电网规划过程中的不确定性,使得整个规划的过程更加合理、有序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22