京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电子病历开启医疗大数据分析时代
许多过去看似没有价值的数据,透过大数据分析技术,往往会有点石成金的效果,电子病历就具有类似的特质。传统的病历,可能只会对当事人包括医生及病患有价值,但如果将数十万甚至数百万的病历数据汇集在一起,再运用大数据分析技术加以分析,结果至少对医药及保险公司,将有难以估计的价值。
行动医疗应用的发展,更促成电子病历的需求增加,包括预约挂号、用药提醒等行动医疗功能,都需要电子病历才能进行。如果电子病历只是作为医生诊断治疗的参考,或是帮助医病之间的沟通,可能就不需要进一步的数据蒐集及监测,但如果能建立所有参与行动医疗的医护人员及病患使用的病历数据连结,再根据数据分析的结果设计诊後医患服务平台,电子病历将更能配合使用者需求,可将患者血压、心率、体重、体脂、血糖、体温、血氧等资讯,未来甚至还可将支援免疫状况、手术资讯、遗传病史以及过敏史等基本体徵数值输入,自动为每一位诊後患者建立云端电子病历档案,让医生精准掌握每位患者入院後的病情。
针对医疗数据进行大数据分析,有助临床诊断(Wikipedia)
医疗仪器蒐集数据的能力日益提升,有利医疗大数据规模的形成(Wikipedia)
避免误诊 帮助沟通
电子病历的数据价值,不仅在於事後的处理,也在於蒐集的方便性及即时性,让数据的精准度大为提高,如透过各种智慧医疗穿戴设备如智慧血压计、智慧心电仪等,就可自动透过无线方式,将各种透过仪器产生的患者数据,传输的後端数据库处理,形成持续性的体徵监测数据,提供更加精准的医疗服务。
电子病历的大数据分析,对经验较为欠缺的医生格外重要,因为传统纸本病历数据缺乏有系统的整理,更无法和其他病历数据产生连动性,更缺乏查询的便利性,如果改为电子病历,即使病患的病情超乎医生的经验范围,医生仍可透过电子病历的大数据分析结果,更有针对性地为病患看诊,和病患的沟通更加方便快捷,大大节省了医生「问」的时间。
透过电子病历大数据分析,不仅病患所有健康情况一目了然,医院的谘询服务工作也会变得更加轻松,尤其是慢性病患者的用药及照护,更需要透过大数据分析与服之间建立完整的关联性,以避免提供错误资讯或是错过需要注意的现象。
实现精准医疗
大数据分析用於电子病历,不仅只是方便医生及患者使用,对於促进医学进步的帮助,更是难以估计。犹他州大学亨茨曼癌症研究所的医学部主任John Sweetenham指出,电子病历不仅仅只是一个病程的记录,透过大数据分析技术,电子病历将会成为癌症临床实践中最重要的工具之一,不仅仅是因为其固有功能,而是因为它将打开一扇通往大数据、病理路径驱动治疗和即时循证临床决策支援的世界的视窗。
事实上,癌症领域的大数据启动专案正在快速成长,如癌症研究资讯交换网络(Oncology Research Information Exchange Network;ORIEN)正不断地纳入更多导入电子病历的医疗中心,主要是希望能让临床治疗、人口数据与精准医学的进一步发展的目标建立联系,很多民营企业、医学科学研究中心和合作小组,也都在发展类似ORIEN的专案。
这些集合电子病历数据的专案,其实最终有可能会奔向建立全面基因组/蛋白组数据库的最终目标,若能与临床疗效数据相关联,将可让医学界可以更快地识别出特定的通路,为个体确定靶向治疗途径,提供最有效的化疗方案。
John Sweetenham指出,想要在纸本病历中寻找调整化疗剂量或者改变治疗顺序时,感觉想要实现精准癌症治疗的崇高目标,看起来还有很长的路要走,但有了电子病历大数据分析後,要实现精准治疗的可能性,将会比大部分人所期待的还要更早。
只要电子病历能够累积足够的大数据,未来的癌症筛选,可能只需要取得病患的检体,便可透过基因组/蛋白组的分析确诊,而不用像过去一样,使用传统的诊断和数据分析,医生甚至可以透过临床基因组或蛋白基因组改变的相关资讯,获悉是否有以某通路为靶点的可用药物或药物临床试验,或者是否有可以应用的化疗选择。
不过,即使医生在电脑桌前,就可以从这些报告中探索试验选择或选择治疗方案时,医生的经验及判断能力仍然很重要,因此多数研究认为,电子病历即使搭配大数据分析技术,可以帮医生为治疗方案确定临床证据,但医生最好还是先将其作为辅助参考,也就是先用来检测数据分析的结果,是否与自己心中的想法一致即可。
但可以预见的是,未来只要电子病历系统能够积累更多的数据,蒐集结果数据并进行分析扩充,未来的医学研究及治疗选择,也将会更准确,医疗资源的利用也会更有效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26