京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析影响力报告揭秘投资回报率与未来趋势
全球领先的大数据分析和营销应用服务供应商Teradata天睿公司(Teradata Corporation,纽交所:TDC)日前发布全球性报告,揭秘六大行业大数据分析计划当前实施状况。该报告由Teradata天睿公司与麦肯锡公司(McKinsey)联合赞助,采用《福布斯观察》(Forbes Insights)设计的调查问卷,面向全球领先企业的316位数据及IT高级决策者展开调研。该报告展现出大数据计划对企业文化与实践的影响,揭示该大数据计划所面临的挑战,并肯定了大数据投资的商业价值。
报告特别指出,大多数受访者对大数据分析不仅进行重大投资,而且从中获得显著的投资回报率。在所有投资类型中,约90%的企业的投资达到中高级,而约三分之一的企业认为他们的投资“非常重要”。此外,约三分之二的受访者认为大数据及分析计划已对营收产生重大的实质性影响。
Teradata天睿公司产品与服务营销副总裁Chris Twogood表示:“运用大数据技术的企业正在逐步实现大数据项目的影响力,这令人非常兴奋。企业不仅致力于投资大数据分析技术,大多数企业还能使这些投资产生实质性的影响。约五分之一(21%)的受访者一致认为,大数据分析是企业获得竞争优势最重要的一条途径,而38%的受访者则认为是其企业首要考虑的五大议题之一。”
Twogood还表示,通过包括数据仓库在内的分析生态系统并结合开源技术部署大数据分析能力,能够整合多种不同类型的系统,可进一步增强竞争优势。
在受调查的六大行业中,企业高层认为大数据具有不同的价值潜力;零售业受访者最看好大数据技术,认为大数据与分析能力是该行业获得竞争优势的重要途径。
调查显示,大数据技术正在改变未来,并通过以下三种重要方式为创新开拓机遇:创造新的商业模式(占受访者54%);开发新的产品促销方式(占受访者52%)以及向外部公司进行数据变现(占受访者40%)。
大数据取得成功的最重要动力 —— 企业高层的支持
那些处于技术前沿、更重视大数据与分析技术的企业表示,管理层的支持至关重要。具体而言:
报告还显示,特别是在企业文化、战略与运营方面,企业仍存在许多障碍。超过一半的受访者表示,接受数据驱动型企业文化是其中最大的障碍,也就是说数据驱动型方式的运营观念目前仍未获得普遍认可。报告还强调,对运用数据进行奖励,以及针对数据进行实验与创造力的培养亦是对该企业文化的重大挑战。
麦肯锡公司消费者营销部门首席营运官Matt Ariker表示:“尽管报告称大数据技术已有所进展,企业虽已充分利用大数据资源,但仍存在极大的提升空间。这些企业文化挑战将在方方面面阻碍大数据计划的实施。但好消息是,这些挑战同时也是一把双刃剑:改善企业文化和思维方式的培养方式,鼓励运用数据实验能力将有助于数据与分析计划获得良好的发展势头和影响力。”
依托大数据计划获得最显著增长势头的企业并未将目光局限于交易型数据,他们正在探索多种数据类型。超过一半的受访者认为,最令人关注的是位置数据(用于识别电子设备的物理位置),紧随其后的是文本数据(电子邮件消息、幻灯片、Word文档、即时消息等非结构化数据)。除探索这些全新数据类型外,领先企业还在分析生态系统中选择性地整合结构化与多结构化数据集,以发现推动新技术创新的分析洞察力。
大数据分析影响力报告简介
本调查由Teradata天睿公司和麦肯锡公司联合赞助,《福布斯观察》执行调查了企业资深领导,包括企业高管层、执行副总裁、资深副总裁或者相当级别领导,以及执行领导团队,包括副总裁、总监、数据科学家或分析师等。受访对象涵盖广泛的行业,包括金融服务、技术和电信、医疗和零售等。从地域分布看,50%受访对象来自北美,25%位于欧洲、中东和非洲,而另外25%来自亚太地区。所有受访对象均在年营收超过5亿美元的公司任职。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08