京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据共享和大数据思维挖掘应用系统市场的新商机
随着新经济环境和新商业规则的产生,应用系统用户的业务运作环境和需求也发生了巨大的变化,以前的应用系统产品关注的是企业用户本身内部的业务数据,而现在随着新商业规则的建立,企业的管理范围扩大了,需要协同的业务以及整合的资源也更多了,这就使得数据交互和共享的需求越发的强烈,应用系统厂商如果能变换角度,注重数据共享、业务协同和大数据的创新思维,就可以挖掘出应用系统市场的新商机
企业用户之间的业务需求是一环扣一环的,上下游企业用户在业务链上所产生和交互的业务数据也自然而然的形成了数据链,甲用户的采购订单也许就是乙用户的销售订单;甲用户的发货单的很多信息,乙用户可以作为收货单的输入;甲用户的应付,会对应乙用户的应收,等等等等,现在的企业用户,业务关系的复杂正度已经远远不是单个供应链那么简单了,错综复杂的业务关系更像是供应链网,有巨量的归属不同企业然而又是相互关联的业务数据在供应链网内不停的流动。可是,现在的状况是各个企业用户只是各自维护自己的应用系统,由于业务系统需要在供应链网内交互的业务数据信息不得不在自己的应用系统里多次重复输入,更谈不上供应链网上的业务数据信息共享。这种铁路警察各管一段的业务数据管理方式,既增加了业务数据处理费用,更降低了运作效率。
其实很早以前就有简单的信息共享,比如EDI,但是很多年过去了,好像应用系统之间的信息共享依然是原地踏步,并没有什么显著的变化,也几乎看不到应用系统厂商在这个领域有相关的新产品。即使是同一家应用系统厂商,其产品之间也不能直接实现业务数据的交互和共享,一般都是需要在实施阶段临时开发接口才能实现。不同的应用系统厂商之间的业务数据的交互和共享,更是要费尽周折才能开发调试出来。
应用系统厂商可以从企业用户之间的供应链网着手来分析数据链,为企业用户提供业务数据交互和共享的产品,应用系统厂商首先可以从自身的产品入手,规范产品间业务数据交互和共享标准,研发出数据交互和共享的产品,进而不同应用系统厂商之间共同打造跨厂商产品的业务数据交互和共享规则和标准,为构建全供应链网数据链数据交互和共享创造条件。这不啻又是应用系统厂商的一个新商机,也能真正为企业用户带来更多的便利。
如果能够建立基于供应链网数据链的数据交互和共享机制,那接下来的基于数据链的大数据分析和共享就有了大显身手的可能。一旦应用系统厂商与众多的企业用户达成共识,将业务大数据脱敏,既保护了业务数据的安全,又能保持脱敏大数据与业务的关联,进而可以从不同业务角度进行处理分析,机器学习、深度学习和垂直化的行业特性挖掘之类的应用也不会再面对巧妇难为无米之炊的窘境了。用户就能获得全新视角的业务和行业分析成果。
将企业用户从简单的数据提供者,变成又是提供者,又是分享者,为他们提供大数据的共享和增值服务,他们的参与度自然会大大提高。企业用户也能利用大数据分析的协助,不仅仅是从内部业务数据和自身客户数据,更能从上下游和行业业务以及客户的角度,来整合资源,提高管理和决策效率。进一步满足企业用户的管理和决策需求,提高市场竞争力。
应用系统厂商的众多合作伙伴积累的大数据也是不能忽视的,应用系统厂商如果能够跳出产品层面合作的理念,以大数据合作的新思路来构建合作伙伴生态圈,用大数据分析和增值服务共同为企业客户提供更完善的服务,对应用系统厂商的众多合作伙伴又是一个双赢的局面。
如果能变换角度,从用数据共享和大数据思维的角度去规划产品,做好顶层设计,就能使得应用系统产品的立意更高,整体框架更完善,更贴合新的商业规则,使企业用户协同和共享的业务运作效率更高。数据链应用也能实现数据产生-数据处理-价值提取-数据消费-新数据生产的良性循环。
当然,可能还有更多的角度去寻找应用系统产品的新商机,这里的看法也只是抛砖引玉,希望能有更多基于数据共享和大数据的应用系统新产品问世,引导企业用户享受业务协同和大数据带来的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16