
大数据在医疗领域的七大应用
大数据的意义在于提供“大见解”:从不同来源收集信息,然后分析信息,以揭示用其他方法发现不了的趋势。在利用大数据发掘价值的所有行业中,医疗行业有可能实现最大的回报。凭借大数据,医疗服务提供商不仅可以知道如何提高盈利水平和经营效率,还能找到直接增进人类福祉的趋势。
例如,美国疾病控制与预防中心(CDC)一直利用大数据对抗埃博拉病毒和其他流行病。CDC的大数据试验项目BioMosaic实时整合人口数据、健康统计数据和人口迁移状况,以便对流行病进行追踪。该机构已成功将BioMosaic作为预测、测试和锁定疾病的工具,它能够追踪潜在的疾病爆发,并就如何遏制潜在的流行病提出建议。
这只是大数据在医疗领域的众多应用之一。以下是大数据在医疗行业的一些常见用途,包括商业运作和健康管理:
1. 分析电子病历:医生共享电子病历可以收集和分析数据,寻找能够降低医疗成本的方法。医生和医疗服务提供商之间共享患者数据,能够减少重复检查,改善患者体验。但目前,大部分的电子病历都无法共享,这在很大程度上是出于安全和合规的考虑,但找到一个安全的方法来挖掘患者数据,这能改善医护质量并降低医疗成本。
2. 分析医院系统:不妨想想我们在分析入院治疗的趋势时获得的好处。例如,对儿科病房医疗设备的统合分析可以更早地识别潜在的婴儿感染趋势。或者,再想想减少术后葡萄球菌感染的好处。通过利用大数据,医院可以知道,医生在术后开的抗生素能否有效地防止感染。
3. 管理数据用于公共健康研究:医务人员会被铺天盖地的数据所淹没。诊所和医院会提交关于健康状况和免疫接种的数据,但没有大数据的话,这些数据毫无意义。大数据分析能够对患者的原始数据进行标准化整合,用以充实公共健康记录,而丰富多样的公共健康记录能催生更合理的法规,并提供更好的医疗。
4. 循证医学:大多数医院和急诊室都实行“食谱化医学”,也就是说,医生对收治的病人采用同一套检查项目来确定病因。而利用循证医学,医生可以将病人的症状与庞大的患者数据库进行比对,从而更快地做出准确诊断。在这里,大数据扮演的角色是从不同来源采集信息,并对数据实施标准化。在这种情况下,带有“高血压”的记录就可以映射到另一条带有“血压升高”的记录。
5. 降低再入院率:看病费用之所以上涨,原因之一是因为患者离开医院30天内,再入院率居高不下。利用大数据分析,按照过往记录、图表信息和患者特点,医院能识别高风险病人,并提供必要的护理,从而降低再入院率。
6. 保护患者的身份信息:UnitedHealthcare等保险商利用大数据分析,使医疗诈骗犯和盗用身份者无所遁形。该公司对语音转文本的记录(比如打给呼叫中心的电话)进行分析,从而找出诈骗者。这家保险公司还利用大数据来预测哪类治疗方案更有可能成功。
7. 更高效的诊所:随着诊所的发展,容纳更多医生和更多患者变得更具挑战性。以纽约州韦斯特切斯特县的Westmed Medical Group为例,该诊所的医生从1996年的16人增加到现在的250人,就医人数达到25万,年收入为2.85亿美元。随着规模的扩大,它必须提高效率才能保持优势。利用大数据,该诊所能分析2200余种医疗过程。因此,它能简化工作流程,把某些临床任务从医生转移到护士手上,减少不必要的检查,提高患者满意度。和其他行业一样,大数据指明了从哪里入手可以改善医疗过程。
以上只是大数据对医疗领域产生重大影响的七个方面。医生和医院管理者获得的数据越多,就越容易发现趋势,越容易对患者数据进行标准化整合,也越容易找到治疗过程中的瓶颈。医生可以像其他领域的从业者那样运用大数据分析,唯一的不同之处在于,前者的意义更加重大,从大数据中获得的见解或许可以挽救人们的生命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22