
大数据分析餐饮行业未来的趋势
大数据应用显现出巨大的经济价值。正是由于餐饮行业竞争激烈而又利润微薄,要想成功实属不易,不少餐馆开始转向大数据以获得竞争优势。跟着小编一起揭秘餐饮真相。
餐馆利用大数据以保持竞争力
正是由于餐饮业行业竞争激烈而又利润微薄,要想成功实属不易,不少餐馆开始转向大数据,以获得竞争优势。
华盛顿特区的美国国家餐馆协会表示,本行业主要企业的税前利润大约在百分之三和百分之五之间。租金、授权和人员成本的上升让人畏惧。与此同时,餐馆还面临着另一个障碍:用户的投诉和批评意见。这些意见不仅来自于专业记者,也来自于社交媒体上发表意见的业余爱好者。谷歌或Yelp的一个差评,可以让你最好的市场宣传付之东流。
食物的品质很重要,这促进一些餐馆使用大数据,以更好地了解消费者的喜好,从而改善他们的食物和服务。在一定的程度上,这些企业通过这种方式,实现了收入的增长。
使用外部数据来改进餐馆的菜单
有些餐馆借助第三方软件产品,来判断哪些菜可能获得成功,从而减少菜单变化所带来的不确定性。Food Genius聚合了来自全国各地餐馆的菜单数据,以帮助餐馆更好地确定价格、食品和营销的趋势。
例如,餐馆老板可以随时了解网上流行的,与食物相关的关键词和短语,某一菜品的平均价格,以及菜单条目增加和减少的趋势。
Food Genius的首席执行官和创始人Justin Massa则表示,长期以来,食品行业的情况,往往取决于人们的口味。这家总部位于芝加哥的公司,对超过350000家餐馆的菜单项目进行跟踪,并与Seamless和GrubHub送餐服务建立了合作伙伴关系。
Massa表示,这些数据可以帮助餐馆获得商机。他们能够给餐馆提供重要的背景信息。归根结蒂,这会决定企业的品牌定位。Food Genius会帮助餐馆了解你如何去利用这些数据。
运用内部数据提高客户的满意度
不少技术型公司正在设法帮助餐馆提高运营效率。Avero餐饮软件公司可以通过POS跟踪购买和无效的项目。餐馆利用这些数据,可以来提高服务器的性能,制定战略来增加销量,甚至找出偷窃的员工。不少餐馆还可以选择,在某几天或一个月的某个固定时间内,集中开展促销活动。根据Avero对30多家高档休闲餐馆的调查,这些餐馆年平均销售额增长率为百分之五,或者说每家餐馆每年的收入约增加25万美元。
Punchh开发了一种移动应用程序,帮助客户能够通过他们的设备留下评论,请他们注册和参与客户忠诚度计划、接受调查并订餐。“运营商可以更好地了解客户,而客户们可以得到更好的服务。这个环境令人鼓舞,它可以赢得回头客,并带来更多的新客户。”
另一家公司,TapSavvy则利用对顾客的了解来协助餐馆改进其服务。顾客在TapSavvy服务的餐馆就餐后,会当场收到一份调查问卷,让他们对餐馆进行评价。“一旦客户在餐馆现场作出了反馈,就不太可能再到网上给餐馆差评了,”TapSavvy的联合创始人Yaniv Tal说。“如果客户很不高兴地离开,差评就会迅速蔓延…每个餐馆都知道他们最重要的是确保客人就餐后很愉快。现场调查是确保这种效果的一种直接方式。”
可以肯定的是,许多餐馆都还没有使用大数据。然而Massa认为,他们缺少改善业绩的潜在手段。在他看来,这些企业可以从自己收集信息开始。“餐馆可以,而且应该收集自己的数据,”Massa说。“如果现在不收集数据,以后想要分析时,自然会无从下手。”
大数据揭秘餐饮真相 消费者需求洞察餐饮转型方向
近日,中国饭店协会发布《2015中国餐饮消费需求大数据分析报告》,从口味、服务、环境、上菜速度、地理位置等8个维度,对来自北京、上海、广州、南京等8个城市的57万条在线点评数据进行了分析。从消费者需求洞察餐饮转型方向,这份报告到底得出了哪些有趣的结论,为您分别解读。
“大数据”一词对于互联网人的诱惑不可谓不大,在实际工作中也经常能看见他们纯熟运用的影子。而对于餐饮人,却对这个词报以“不明觉厉”的看法,事实上,对于以服务为主的餐饮行业大数据显得更为重要,今天我们就来谈谈如何运用大数据来搞餐饮营销。
首先要明白什么是大数据,所谓大数据其实就是:从大量的数据来源,取得高速更新、多形式、随时变化的复杂数据,并通过科技手段对其进行整合。而大数据应用于餐饮行业,就体现在顾客的消费行为如:支付、点单、评价、拍照分享、使用打折优惠、会员管理等等就是大数据的一些数据节点,产生这些数据节点的决策过程具有丰富的挖掘价值,能够反映顾客自身条件,并可以指导如何用产品和服务更好地满足顾客。
大数据的实现主要需要克服三大难题,第一让顾客自愿录入数据,第二让顾客完整录入数据,第三让顾客连续录入数据,这三大难题不仅需要强大的数据源头更需要卓越的技术开发能力。当前大数据在餐饮行业中的应用已经初现端倪,在C端(面向消费者)产品上,大众点评已经将原本简易的总体打分、平均消费、照片的评价体系做的越来越细分,增加了关键字可选项评价、推荐菜品评价,门店环境照片、菜品照片、价目表;而在B端(面向商家)的产品上,微餐谋APP也通过对接门店POS系统及微信点餐等方式实现顾客消费记录、顾客偏好、门店经营信息等详细数据的记录与分类,让门店经营实现数据化导向。
最后要说如何利用大数据做好营销,毕竟数据是机器计算出来的,但事情却需要看到数据的人去具体施行。简单来说,只需要利用大数据帮助经营者了解“目标消费者观看内容的时间,目标消费者人群的锁定,目标消费者感兴趣的内容”这三个营销活动中的重要因素,接着投其所好,目标消费者自然就会接踵而来。
就拿现在基本每家餐厅都在玩儿的微信营销来说,为什么一些专业的机构运作就会发展的很好,但商家自己做却无人问津?其主要就是由于微信拥有大量的数据分析基础,而只懂得经营的餐饮人对此一窍不通。微信营销不是一门简单的学问,从事媒体的人玩得转,每天招呼生意的人就不一定了。大数据的应用需要一种日常化、数据化、自动化的顾客营销方式。
最后要说,餐饮人无需将“大数据”看作神圣而高不可攀的互联网产物,它其实就在我们身边,并且正在迅速应用于餐饮服务的过程里,更多的服务提供商开始考虑为做生意的人减轻运营负担,而作为餐饮从业者本身,生在这个时代是不幸的,也是幸运的,只要敞开心扉拥抱互联网,驾驭大数据为自己“开源节流”日进斗金,绝对不是痴人说梦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16