京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据爆炸下的冷思考 企业该如何抉择
随着组织决策越来越多地采用数据驱动,高层管理人员需要保证决策权是数据驱动的。这就解释了为什么如此多的组织已经采用数据治理的战略。
大数据爆炸下的冷思考企业该如何抉择?
如今,越来越多的企业难以解决经营原则的两个矛盾。一方面,他们迫切寻求更大的灵活性;另一方面,他们希望用其流程规范企业利益相关者。这种冲突和不安导致对城传统的“集权/分权”的辩论。企业和客户需要更大的灵活性,而员工和合作伙伴期望更大的权力。因此,企业希望二者兼顾,并达到平衡。
这其中包括更多的人,但通常会增加协调成本和响应时间。而这几乎矛盾的是,更大的企业的灵活性需要更大的反应能力和提高协调能力。涉及的利益相关者越多,决定延迟的可能性越大。但有效的灵活性往往需要具有包容性的利益相关者的参与。
换句话说,更多的人希望更频繁地作出更灵活的决策,这种情况会让客户疯狂。例如在一家财富1000强公司,该公司的几个客户支持小组之间爆发了“口水战”,技术设计组急于回应用客户的投诉,同样迫切地避免临时性修复。却没有一个小组可以有效解决问题,而他们的职能重叠迅速成为冲突来源而不是努力合作。这种情况并不少见。
那些数字网络化企业,例如Slacked,Chattered,Skyped,Google公司等加剧了紧张局势和痛点:更多的利益相关者可以即时访问和共享可操作的信息。其技术有助于提高整个企业生态系统的透明度和知名度,大大提高实时态势感知能力。但是,管理和运作能力可能不会对这些数据驱动的信息采取行动。
到目前为止,处理这些紧张局势最好的和最有效的途径是25年前迈克尔•詹森在决策权的开创性工作。简单地说,决策权要明确决策的权力和责任。决策权是关于如何组织“决定如何判断”谁有权作出决定,并把它看成是对企业决策的治理模式。
詹森的微妙和精彩观点是,做出决定的权利,不仅仅是执行或负责任务的能力,而且对提高组织效率和有效性至关重要。因此,分配决策权是每一个组织重要的工作角色和任务的定义。有鉴于此,决策权可以应该被视为权力的管理机制。你或你的团队的决定权越大,则会赋予更多的权力和责任。
该RACI框架为詹森的决策权办法提供了一个很好的真实世界的实例:
负责:谁在完成任务?
问责:是谁在做决定,并对任务采取行动?
咨询:谁将做有关决定和任务传达?
知情:谁将在在项目/流程中的决策和行动进行更新?
这些问题是简单的,相对容易映射。也就是说,在一个RACI审查中发现有关个人和团队连接数字应该是简单的。越来越多的企业采用RACI(或某些变体)来创建审计问责的网络项目和过程管理。
这些网络同时成为具有包容性和灵活性的平台。想要咨询或通知的个人和团队可以选择网络;反之,当问责或负责经理需要更敏捷地响应客户的需求时,他们可以利用工作网络提供“及时”的回应。映射这些网络为利益相关者和高层管理人员创造了可视性和清晰性。为他们进入企业的决策层次结构提供了必要的窗口和镜头。
然而具有讽刺意味的是,增长最快的应用决策权上强调数字化、数据和分析。而有权访问、处理和共享数据已成为企业中最伟大的机会和争夺的来源。这种结构的转变远远超出了詹森25年前最初的设想和描述,因为大数据的兴起及其相关的分析,改变了围绕决策权的争论。
围绕数据的决策权越来越多地需要决策权的数据。换句话说,如果你的组织已经准备好进入过程,并分享10倍到100倍以上的数据,那么你的现有决策机制的权利是完全过时了。任何机智的品牌经理策划当天的营销活动,而没有纳入社会媒体分析的能力?但品牌管理者需要数据科学家和分析工具的计算能力,并从该数据获得更大的价值。因此决策权是必要的,以确定和界定品牌管理和数据管理的协作方式。
大数据爆炸完全重新定义了决策权和RACI讨论。一些公司历来注重新产品的设计和开发工作,但随着移动应用的兴起,该公司的创新重点转移远离建设更好的产品,而是促进更好的用户体验。UX需要不同的产品数据和分析问责;用户体验的重点是不同的团队和个人需要咨询和告知。从本质上讲,用户体验驱动的数据和分析平衡了灵活性和包容性之间的决策权的关系。
企业的人员和流程围绕UX决策权的技术实施,其结果证明了效果惊人。该公司通过各种形式的社交媒体和使用情况的监测获得10倍以上可用的反馈信息,并在三个月内开发出更好的版本,而不是以往的一年时间,并加大了产品开发力度,目前开发成本是原来产品开发成本的一半。
随着组织决策越来越多地采用数据驱动,高层管理人员需要保证决策权是数据驱动的。这就解释了为什么如此多的组织已经采用数据治理的战略。而相反,更多的传统IT治理,旨在为IT系统管理创造更大的问责性,在数据治理过程中人们认识到,数据是任务资产管理的关键。
如何数据得到共享(包容)?组织如何有效地利用这些数据(灵活性)?这些数据治理问题的答案将在数据驱动的决策权的创新应用中发现。数据治理的未来影响决策权的未来,而决策权的未来决定数据治理的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23