
插上“大数据”翅膀 “捕鼠”从此大不同
“社会上多余的资金很多,为什么不愿意进入股市?就是因为他在信息上抢不过别人,光看K线没有用,不管是大老鼠,小老鼠,也许是看起来比较可爱的米老鼠,都是很可怕的。”这是一位资深股民吐露的心声。
而在大数据时代,监管者的“捕鼠”工具全面升级,这犹如阿基米德找到了撬动地球的支点,整个资管行业已然一片风声鹤唳。
监管者利用大数据系统“捕鼠”最早体现在2013年的马乐事件上。此后开始的老鼠仓调查风暴,很多线索来源都是来自于交易所日常监控下的大数据分析。“捕鼠”行动插上“大数据”翅膀,效果的确立竿见影。
此前的老鼠仓查处案件,线索来源多来自于举报与现场突击检查等,或是从其他案件顺延发现线索。交易所数据应用流程通常是先发现个股触动异动指标,随之核查该公司是否有特殊信息公布以及与之相关的可疑账户锁定。这种迹象即成为线索,按一定程序报送至证监会,证监会决定是否立案。
据记者了解,多年之前,证监会基金部建立了一套监测基金公司非公平交易的系统,可实时掌握基金公司不同基金产品间利益输送行为。这套系统后来与沪深交易所的异常交易系统相结合,逐步发展出完善的市场异动监测工具。
目前,交易所的大数据系统大致可以分为交易数据和文本数据两块。文本数据系从美国学习引进的技术;而交易数据的挖掘,事实上是一个很成熟的学科,但应用到股票交易的监管上,仍然需要一线监管和稽查执法的经验总结。
在业内看来,区分高度相似的交易到底是巧合还是老鼠仓,需要进行大量的历史分析。一个月的数据远远不够,至少需要一年,甚至三到五年。在这样一个长的时间跨度内,如果大量的交易行为与老鼠仓的特征吻合,则作为证据的证明能力更强。
具体来看,上交所异动指标分为4大类72项,敏感信息分为3级共11大类154项;深交所建立了9大报警指标体系,合计204个具体项目。此外,深交所监察系统即可同步实现超过204个报警指标、300项实时与历史统计查询、60余项专用调查分析、100多种监管报表监测分析等功能,每年处理的各类实时报警信息14万余次,平均每个交易日处理报警600余次。
“过去查老鼠仓还会到公司来查封电脑,现在得益于大数据系统的应用,稽查部门在老鼠仓案件中收集掌握的证据更加有效,在侦查阶段基本上不打草惊蛇,不用直接接触被调查对象和相关公司,证据确凿后,公安局直接就把人带走了。”一位基金从业者说。
更令人欣喜的是,大数据的应用或将进入一个更新的高度。据记者了解,不久前证监会主席办公会刚批准通过的证监会中央监管信息平台,可以将目前分散在证券监管领域各个角落的信息集合起来,即包括交易所数据库,也包括各层级证券监管部门的日常监管、检测数据信息。
“这将是一个智能化、云数据的平台,未来会对提高稽查执法效率等起到很大作用。”接近监管层的相关人士表示,此外,监管层也在进一步加强稽查执法力量。比如眼下已在上海和深圳增编稽查支队,每个支队增加了近100人。从技术到人力资源配置,未来的稽查风暴将成为常态化。
在“捕鼠”行为更为智能、更为常态化的形势下,不少业内人士都感觉“压力山大”。目前,借助大数据系统,“捕鼠”风暴已从基金圈刮向了券商。有券商短短数周内接连召集分析师突击开会强调风险。不少分析师坦言,这一轮风暴的紧张程度之高已经超过了其职业生涯的其他时刻。
“近一个月,我们已经专门就做好风险规避工作开了四五次会。”有券商分析人士透露,公司异地设立的研究所听说也召开了内部会议,主要内容依然是严格要求按风控规程操作,研究报告不允许违规传播,不管是邮件、QQ还是微信都要谨慎提及个股,严禁传播内幕信息。
多位券商人士表示,“眼下这场已经延续了数月的风暴已经不再仅仅盯着基金经理,而已横扫资本市场各个利益环节,券商、保险、私募都难逃一查。”
5月9日,证监会通报了平安资产管理公司一位投资管理人员涉嫌老鼠仓。北京市公安局于5月13日通报了另一起保险公司权益投资部门总经理的老鼠仓案件,且已正式批捕。这两起案件的共同特点是涉案累计金额巨大,均在亿元以上。
从证监会最新信号来看,此次“捕鼠”行动绝不是“一轮运动”。5月19日,证监会主席肖钢在学习落实“新国九条”的讲话中表示将坚决打击证券期货违法犯罪行为。加强对证券期货违法违规行为的监测和线索发现,将坚决打击欺诈上市、虚假信息披露、内幕交易、操纵市场等各种违法违规行为,并特别强调会“始终保持高压态势”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29