京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据的众多生动案例
近日,首届中国(杭州)工业大数据产业发展高峰论坛在杭州举办。论坛上,工业大数据相关研究者、实践者济济一堂,“晒”出了工业大数据的众多生动案例,让你提前感知未来的工业大数据采集人体数据实现西服的“量体裁衣”,煤矿工地依靠智能化设备减少矿工数量……5月31日,首届中国(杭州)工业大数据产业发展高峰论坛在杭州举办。论坛上,工业大数据相关研究者、实践者济济一堂,“晒”出了工业大数据的众多生动案例。
1、个性化西服如何“量体裁衣”
观数智库创始人、《大数据》《数据之巅》作者涂子沛参加了贵阳数博会的李克强总理座谈会,总理以定制西装举例说明了大数据的作用。其实,在参加座谈会前,涂子沛也第一次定制了一套西服。穿上之后,他表示再也不想穿以前的西服了,因为从来没有感受到那么得体。
“红领”是一家定制服装生产企业。他到了这家工企业后看到,几千件西服没有两件完全一样,但仅从面料、颜色分辨不出。很多人的西服里面都有商标,很多人喜欢在这里绣上自己的名字或一句话,这就是个性化。每个流水线都有数据驱动,一条工序的数据清清楚楚地送到操作员工作台上。这个方案成本确实增加了,但是利润上升得更多。
2、陕北煤企如何减少矿工?
传统采矿业如何实现从人工采矿,到一个人都不用?北京大学教授、工信部原副部长杨学山之前去过在陕北一个煤矿企业的现场。当时,借助自动化设备,这家煤企624个人的产能,已经相当于今天大部分煤企五六万人的产能,相当于20年前中国最大的山西大同矿区20多万人的产能。
所以,整个产业链,包括采矿到后期的生产,跟人的关系越来越小。实现这些,就是信息、数据构成了自动化装备的基础。没有数据、没有数据化的装备是做不成。
3、沈阳“i5”数控机床的逆袭
这是一个装备发展过程中转型升级的最佳实践,其中,工业大数据承载着非常重要的作用。沈阳“i5”数控机床从开始研发,到今天在智能数控机床进入世界领先的行列,花了十年。前几年为何没有成功?因为数据缺失。
不管是材料、还是装备的发展,高端数控机床长期被国外控制,缺乏实践过程中的数据支撑发展不起来。模型怎么建,也需要数据支撑。但沈阳机床十年磨一剑,积累了数据,打造世界领先的智能数据机床。它还倡导新的商业模式,实现按使用小时收费。
4、可以实现在线3D预览的纸盒
纸盒是典型的个性化生产,各行各业要用的包装纸盒千差万别,上面又要印不同的文字、图案,这是非常适合做C2M的领域。
中国电信制造行业应用基地总经理陆晋军介绍,我们结合了相应的技术,实现线上个性化定制结合3D预览技术,让客户线上下单,可以看到给他设计的样式,还能做到在线直接3D预览,最后线上报价成交。当然,在生产中会有协同,在线平台要和生产平台打通。
由此延伸,他们还分析了很多领域,一些需要定制化的礼品、文具或包装物品的生产企业,都可以比较快速地实现C2M模式,提高效率、提升服务。
5、拥有1亿模型的零件数据库
这是20年前就出现了的零件库。德国Genius WEB2CAD开发Trace Parts,能集成到主流CAD软件的零件库中,直接在CAD软件中启动,支持零件搜索和3D视图,同时以DWG或DXF格式生成零件所有二维视图。
目前,这个零件库有1亿多种零件模型,设计人员可以进入下载这些模型。然后,把它组成产品再进行仿真,再把这些零部件交给供应商制造。这些零部件专业化、成本低、质量好,这种专业化的模式国内还比较少。
6、粉丝参与小米手机的功能设计
小米手机依靠几十万的粉丝,手机三分之一的功能由用户设计。通过建立智能手机设计平台,小米让用户参与设计,形成用户设计大数据,帮助改进产品,使之满足用户需求。
7、试衣间如何给设计师灵感?
ZARA门店的店长每天有一个考核值,向全球数据中心提供当天有多少件衣服被试,哪件衣服有多少人选进了试衣间但没有被购买,原因是什么?它的试衣间可以记录试衣的情况,甚至衣架上也装了传感器,通过不同方式来收集这个数据。
每家门店POS机数据实时回传数据中心,ZARA的快销品最多消耗两周就进行补货。通过POS机数据,设计师形成了一个巨大的知识库,客户最喜欢什么衣服、为什么衣服被多次拿起而没被购买,ZARA会最快把衣服进行修改,然后再次进入专卖店。
数据收集是至关重要的一点,门店的经理做KPI值,这是一件复杂的系统。ZARA将网络上海量的数据看成实体店前端的测试。此外,大数据缩短了生产时间,让生产端能够看清顾客需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28