
里约奥运英国赛艇队傲视群雄 大数据分析也是幕后英雄
令人瞩目的2016年里约奥运会近日落下帷幕,其中赛艇项目比赛于14日全部结束。上届的伦敦奥运,英国赛艇队获得4金2银3铜,傲视群雄。在本届奥运会14项共42枚奖牌中,英国赛艇队为英国代表队带来的奖牌数贡献依然巨大,以3金2银排在该项目奖牌榜首位。 作为奥运会英国队的代表性优势项目,赛艇队在争夺奖牌上的实力不容小觑。这项运动本身在比赛中可能因为多方面因素的细微影响而导致戏剧性的结果——第一名与第四名的差距也许只是几毫秒,但这却决定了运动员获得的是光荣的奖牌还是无限的遗憾。
提高训练效果
顶尖的英国赛艇队队员,每天需要进行好几次训练。训练中,单个运动员身上得到的训练数据已经非常可观,全队运动员的总体数据更是巨量。之前,这些数据散乱在多个数据库和表格中,数据的更新速度十分缓慢,因此导致了对这些数据的跟踪和分析十分困难。
为了充分备战里约奥运,英国赛艇队在早期便开始使用SAS解决方案来分析运动员数据和改善训练方法。赛艇队将数据更快更全面地汇总在一起,并进行更好地分析。这为运动科学家、教练和团队经理提供了一个可以跟踪运动员运动表现的平台,帮助他们更好地决策。
“英国赛艇队的训练地点有时在水上,有时在赛艇机上,有时在体育馆里。同时我们还会去一些高海拔的挑战性环境进行训练,”Mark Homer,英国赛艇队高级运动科学家说。
“将所有领域的数据进行汇总,结合比赛中所获得的数据,我们将汇聚一个巨大的数据源来指导训练和提高运动员的运动表现。但是如果没有分析的工具,这些数据就没有任何作用。通过与SAS的合作,我们现在能更深入和快速地分析这些赛艇运动员的数据。之前因为数据的分散,我们需要花费大量的精力和时间来汇总和分析单个运动员的信息,现在,我们可以马上搞定。”
减少受伤风险
英国赛艇队使用SAS可视化分析对来自多个数据源的数据进行分析。深入和快速地进行数据分析将帮助运动员最大化每次训练的效果。不光这样,数据分析还可以应用于发现运动伤害的迹象并进行修正,帮助运动员减少训练缺席,从而确保他们在比赛中处于最佳状态。
发掘赛艇人才
“现在,赛艇已经是一项比较成功的运动项目,从2012年开始我们就已经取得了一定的成绩,并从中尝到了甜头。所以当有新人加入这项运动的时候,我们需要能够引导他们,确认他们在正确的发展,”Homer说,“未来,数据分析将是帮助我们预测的关键,比如某运动员现在的成绩并不理想,但是通过数据分析,我们能知道他可能会在接下来几年大放异彩。”
通过数据建模,可以帮助教练和经理更好的理解运动员相关信息,协助他们进行决策。这就包括找出未来的赛艇新星,为不同的赛艇配置队员组合,优化每个组的比赛表现。
“运动员的运动技能可以使用多种方式进行评估,一个能够最大化已有数据资源利用率的工具对我们来说至关重要。利用这些数据我们将能够做出最佳决策。但是更令人兴奋的是寻找金矿时的未知——有些东西在我们开始分析数据前绝对不会预见到。因此我们能够发现更多关键要素,并将这些要素整合以影响整体的表现。
伴随着赛艇运动本身的不断的进步,未来,英国赛艇队将在SAS数据分析的帮助下科学训练,发掘新的运动人才,为下一个奥运周期做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16