
里约奥运英国赛艇队傲视群雄 大数据分析也是幕后英雄
令人瞩目的2016年里约奥运会近日落下帷幕,其中赛艇项目比赛于14日全部结束。上届的伦敦奥运,英国赛艇队获得4金2银3铜,傲视群雄。在本届奥运会14项共42枚奖牌中,英国赛艇队为英国代表队带来的奖牌数贡献依然巨大,以3金2银排在该项目奖牌榜首位。 作为奥运会英国队的代表性优势项目,赛艇队在争夺奖牌上的实力不容小觑。这项运动本身在比赛中可能因为多方面因素的细微影响而导致戏剧性的结果——第一名与第四名的差距也许只是几毫秒,但这却决定了运动员获得的是光荣的奖牌还是无限的遗憾。
提高训练效果
顶尖的英国赛艇队队员,每天需要进行好几次训练。训练中,单个运动员身上得到的训练数据已经非常可观,全队运动员的总体数据更是巨量。之前,这些数据散乱在多个数据库和表格中,数据的更新速度十分缓慢,因此导致了对这些数据的跟踪和分析十分困难。
为了充分备战里约奥运,英国赛艇队在早期便开始使用SAS解决方案来分析运动员数据和改善训练方法。赛艇队将数据更快更全面地汇总在一起,并进行更好地分析。这为运动科学家、教练和团队经理提供了一个可以跟踪运动员运动表现的平台,帮助他们更好地决策。
“英国赛艇队的训练地点有时在水上,有时在赛艇机上,有时在体育馆里。同时我们还会去一些高海拔的挑战性环境进行训练,”Mark Homer,英国赛艇队高级运动科学家说。
“将所有领域的数据进行汇总,结合比赛中所获得的数据,我们将汇聚一个巨大的数据源来指导训练和提高运动员的运动表现。但是如果没有分析的工具,这些数据就没有任何作用。通过与SAS的合作,我们现在能更深入和快速地分析这些赛艇运动员的数据。之前因为数据的分散,我们需要花费大量的精力和时间来汇总和分析单个运动员的信息,现在,我们可以马上搞定。”
减少受伤风险
英国赛艇队使用SAS可视化分析对来自多个数据源的数据进行分析。深入和快速地进行数据分析将帮助运动员最大化每次训练的效果。不光这样,数据分析还可以应用于发现运动伤害的迹象并进行修正,帮助运动员减少训练缺席,从而确保他们在比赛中处于最佳状态。
发掘赛艇人才
“现在,赛艇已经是一项比较成功的运动项目,从2012年开始我们就已经取得了一定的成绩,并从中尝到了甜头。所以当有新人加入这项运动的时候,我们需要能够引导他们,确认他们在正确的发展,”Homer说,“未来,数据分析将是帮助我们预测的关键,比如某运动员现在的成绩并不理想,但是通过数据分析,我们能知道他可能会在接下来几年大放异彩。”
通过数据建模,可以帮助教练和经理更好的理解运动员相关信息,协助他们进行决策。这就包括找出未来的赛艇新星,为不同的赛艇配置队员组合,优化每个组的比赛表现。
“运动员的运动技能可以使用多种方式进行评估,一个能够最大化已有数据资源利用率的工具对我们来说至关重要。利用这些数据我们将能够做出最佳决策。但是更令人兴奋的是寻找金矿时的未知——有些东西在我们开始分析数据前绝对不会预见到。因此我们能够发现更多关键要素,并将这些要素整合以影响整体的表现。
伴随着赛艇运动本身的不断的进步,未来,英国赛艇队将在SAS数据分析的帮助下科学训练,发掘新的运动人才,为下一个奥运周期做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30