
大数据带来的健康革命
大数据能为我们人类带来哪些好处?
举个直观的例子:我们知道人类的一些疾病与基因组异常有关。例如唐氏综合症、透纳氏症和许多其他疾病,是染色体的不分离现象所造成。同样,癌细胞中的染色体则频繁地出现非整倍性现象等等。
显然,研究基因组,并让每一个人检测并了解自己的基因组,有着非常现实的意义——如果能发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,就能使人类在分子水平上全面地认识自我,从而规避各种疾病的困扰,改变自我。
但是,人类基因组DNA有多达30亿个碱基对的序列,这就意味着巨大的数据量。还好,今天的科技凭借云计算、大数据的能力越来越强,由于x86架构的计算和存储成本的大幅度降低,如今检测并计算分析一个人的基因组,已经从13年38亿美元,下降到了120小时几千美元。
如今云计算供应商还在大数据处理能力上不断实现突破。比如今年上半年,经过阿里云深圳团队不断摸索,千人基因组的分析,原来要做几个月,如今的记录还不到一天,花了仅仅21小时47分12秒。
在技术日新月异的今天,阿里云、英特尔、华大基因三方联手,其目标是在2020年以前,在24个小时之内完成一个人全基因组的测试、分析,并将成本控制在2000人民币以内。
这样的结果,直接导致了生命科学已经从科学研究的殿堂,即将步入医疗的临床,从而改变现今传统医疗手段,颠覆整个医学界的治病模式。
不仅如此,生命科学的范畴并不仅仅是我们人类自身,也包括和人类相关的食品,从蔬菜、水果、水稻、小麦到动物。
也正是因为此,德国医药和农化巨头拜耳公司今年提出将以620亿美元全现金方案收购美国转基因种子和农化巨头孟山都。目前孟山都拒绝了这一收购要约,因为这笔交易一旦达成,不仅将成为德国企业史上最大的对外收购交易,而且也将彻底改变欧盟和美国之间对于未来生命科学的主导权。
与此同时,生命科学和现代农业领域的另一大并购案,也在紧锣密鼓的进行中:中国化工提议以每股470瑞士法郎(约合3069元人民币)现金收购全球第一大农化和植保公司及全球第三大种子公司——瑞士先正达70%股份。
如今,不论是先正达还是孟山都,都从农业化学公司发展到目前具有“植保+种子+农技服务”一体化作物综合解决方案的提供商,而拜耳和中国化工的收购要约,也显示出这两家医药、化工和农化领域科技巨头的下一步发展方向。
很明显,科技领域正在面临洗牌重组的行业产业不仅仅是IT,同样包括农化、医疗、农化等所谓的生命科学领域。
这些,都拜托大数据的价值再造——为整个行业带来颠覆性的革命。
事实上,即便是一颗草也有基因,而且跟我们人类的基因有17%是一样的;一只苍蝇,有40%基因和人类是共享的;一条鱼与人类相同的基因竟然高达63%;到了经常被用作生命科学试验的小白鼠,其与人类共享的基因已经达到80%;而大猩猩与我们人类同质化基因高达96%。到了人类自身,无论是男人女人、黑人白人,人类在生物学上就一种,人与人的差异只有0.5%。
别小看这0.5%。你的拇指是直的还是弯的,舌头能不能卷起来,喝牛奶会不会拉肚子,酒量大小的差异,这些都是基因决定的。是基因和自然选择决定了你对乳糖的耐受,因为欧洲人和蒙古人在数千年前比中国人更适应游牧生活,从牛奶中获取与农作物同样的营养。
在生命科学中,唯一不例外的就是例外,它总会发生,比如一个妈妈生出来的异卵双胞胎,长得很像,但是肤色不同,这个概率只有几百万份之一。这样的突变,使得我们的基因变得越来越丰富和多样,也使得每一个人的基因有了那0.5%的差别。或许有一天,因为基因组的测试分析变得更容易和更低成本,你在社交软件中就可以跟朋友对比你的基因,说哪些基因好,哪些基因弱爆了。
这就是数据的价值。大数据可以帮助我们终结很多疾病,比如从NIPT数据中,我们可以发现孕期肿瘤的踪迹,我们还可以比对遗传病的分子流行病学数据库,找到BRCA2突变位点的频谱分布,从而有效控制肿瘤、癌症的发生;大数据也可以帮我们改变体内肠道的菌群生态,让我们从肥胖症中,恢复健康。
一句话,当每一个人都有自己的基因数据的时候,这个世界带给我们的生物医药的领域是完全不同的——大数据将带来健康革命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01