
营销将大数据化多渠道化
7月22日上午消息,中国互联网大会在北京举办,亿玛总裁柯细兴接受新浪科技专访。
他认为在互联网+浪潮冲击各个行业的大前景下,所有企业都将面临互联网转型。而互联网营销将面临大数据精准投放和多渠道共同推广的转变。
以下是访谈实录:
新浪科技:首先简单介绍一下我们公司。
柯细兴:新浪的网友应该比较熟悉亿玛了,我们是2004年创立的一家公司,一直在效果营销领域里面独树一帜的,不断的推陈出新,不断的给客户提供效果营销的数据地我们提供了多渠道大数据驱动的营销。
新浪科技:现在互联网+的浪潮不断冲击各个行业,这样的背景下您认为营销行业发生了什么变化
柯细兴:毫无疑问这是一个很好的议题,我们亿玛也是审时度势看到了整个互联网产业的发展,在2014年亿玛对于未来的互联网有三点判断。
第一点,互联网进入了互联网产业化和产业互联网化这样一个阶段,实际上和国家提倡的互联网+是一个行业。
第二点,无企业不电商,未来所有的企业都在在线。
第三个,一切皆数据,所有的信息都会量化到数据的精准识别。未来10年是互联网+的10年,我们公司认为互联网+的实质特征就是两个,一个是在线,一个是数据。基于这两点来说,毫无疑问会影响到营销这个行业,营销这个行业第一点来说,基于大数据分析的营销可以大行其道。
由于所有的东西都会在线和产生数据,意味着用户都会变成碎片,变成跨终端,线上线下一致化,对于跨终端渠道的用户识别能力变得非常重要,我们认为未来10年是大数据的10年,是能够给客户提供一站式营销解决方案的10年。
新浪科技:你刚才提到大数据的营销,这个概念对电商行业会有什么具体的影响?
柯细兴:大家知道,在电商行业来说最根本的营销目标是为了让用户获得订单,这是企业的一个营销目标,基于这个目标就要知道它的用户在哪里,用户就会用不同的终端来接入,意味着我们对于终端的放大能力变得非常重要,就是说我们必须给电商行业提供基于全网的、全终端的受众的能力,这是第一点。
第二点来说,电商企业的数据或者对效果的跟踪是全程的,他能够看到它的广告,到用户有没有产生订单,甚至用户有没有发生售后的投诉,是一个全生命周期的过程,第一个是全网,第二个是全程。
第三个叫做全网成交,现在的电商不再简简单单的作为一个电商,而是即有官网又有天猫店,京东店,即有线上店又有线下O2O的店,是一个线上线下的多渠道,用户到哪里成交最有效,我们提供了一个全程的服务,全网的营销,全网的精准和全网的营销,从这个意义上来说对于电商营销的要求越来越高,所以电商企业越来越选择和我们这样第三方的平台进行合作。
新浪科技:现在传统的企业做电商,像一些互联网企业电商肯定是不一样的,它的营销需求也是不一样的,您能分析一下他们有哪一些不同吗?还有就是传统企业做电商面临哪一些变化?
柯细兴:纯互联网的公司做电商没有传统的包袱,要走集约化、集中化、效益化,它的营销要获得订单、获得规模,规模效应再影响供应链。传统企业天生拥有供应链的优势,从这个角度来说他不应该放弃供应链优势向互联网的纯电商来学习。所以说传统电商,传统企业做电商,第一个要结合它的供应链优势。第二个来说要结合它的品牌优势,从这个意义上来说传统企业发展电商的过程是一个渐进式的,他首先要把他线下的品牌变成线上的品牌,把线下的供应链优势变成线上供应链优势。
第二个,传统企业更多的在构筑一个O2O,苏宁易购在构筑线上线下一体化,从这个角度来说,第一个是它发展的路径不一样,第二个是它的商业模式也会发生变化,这两点是传统企业做电商和互联网做电商本质的不同。
至于营销来说可能也会不太一样,营销来说传统企业做电商,第一个它的动作要做的叫品牌收购,要把线上的品牌优势,把线上的用户拉回来,这个阶段我们往往说它的主动点是线下的品牌线上的用户,第二个阶段,是开始给线上的用户,线上品牌,这个时候就进入了一个品牌阶段,所以第一个品牌是收割,第二个是品牌的再造。第三个线上的品牌又回到线下的用户,这个它讲品牌创新,他经历收割、再造到创新,我们营销结合他业务品牌的路径帮他量身订作来设计。
新浪科技:我们亿玛能对互联网企业,或者传统的企业做电商的,能够带来哪一些帮助呢?
柯细兴:第一个毫无疑问,也是我们经常思考的,第一点来说,因为我们在最鲜明的一点是效果,因为我们是12年基于大数据做营销,我们跟直白的给他带来订单,这是最直观的。
第二点就是规模,因为我们覆盖了互联网的成千上万的媒体,我们每天能覆盖的流量是300亿PV,我们每天能够触达的网络用户是85%,网络消费者购买用户,我们积累的这种购买行为数据是10亿的规模,也就是说从个角度来说,我们能够最大范围的,最大规模的帮企业产生订单。
第三点就是服务,我们的专业服务,从初始阶段到发展阶段,到它的创新阶段,我们都能够全程为他服务。总结我们来说,我们公司的3个优势,第一个就是效果,第二个是规模,第三个是我们的专业的服务,这3个加起来是3个S。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01