京公网安备 11010802034615号
经营许可证编号:京B2-20210330
营销将大数据化多渠道化
7月22日上午消息,中国互联网大会在北京举办,亿玛总裁柯细兴接受新浪科技专访。
他认为在互联网+浪潮冲击各个行业的大前景下,所有企业都将面临互联网转型。而互联网营销将面临大数据精准投放和多渠道共同推广的转变。
以下是访谈实录:
新浪科技:首先简单介绍一下我们公司。
柯细兴:新浪的网友应该比较熟悉亿玛了,我们是2004年创立的一家公司,一直在效果营销领域里面独树一帜的,不断的推陈出新,不断的给客户提供效果营销的数据地我们提供了多渠道大数据驱动的营销。
新浪科技:现在互联网+的浪潮不断冲击各个行业,这样的背景下您认为营销行业发生了什么变化
柯细兴:毫无疑问这是一个很好的议题,我们亿玛也是审时度势看到了整个互联网产业的发展,在2014年亿玛对于未来的互联网有三点判断。
第一点,互联网进入了互联网产业化和产业互联网化这样一个阶段,实际上和国家提倡的互联网+是一个行业。
第二点,无企业不电商,未来所有的企业都在在线。
第三个,一切皆数据,所有的信息都会量化到数据的精准识别。未来10年是互联网+的10年,我们公司认为互联网+的实质特征就是两个,一个是在线,一个是数据。基于这两点来说,毫无疑问会影响到营销这个行业,营销这个行业第一点来说,基于大数据分析的营销可以大行其道。
由于所有的东西都会在线和产生数据,意味着用户都会变成碎片,变成跨终端,线上线下一致化,对于跨终端渠道的用户识别能力变得非常重要,我们认为未来10年是大数据的10年,是能够给客户提供一站式营销解决方案的10年。
新浪科技:你刚才提到大数据的营销,这个概念对电商行业会有什么具体的影响?
柯细兴:大家知道,在电商行业来说最根本的营销目标是为了让用户获得订单,这是企业的一个营销目标,基于这个目标就要知道它的用户在哪里,用户就会用不同的终端来接入,意味着我们对于终端的放大能力变得非常重要,就是说我们必须给电商行业提供基于全网的、全终端的受众的能力,这是第一点。
第二点来说,电商企业的数据或者对效果的跟踪是全程的,他能够看到它的广告,到用户有没有产生订单,甚至用户有没有发生售后的投诉,是一个全生命周期的过程,第一个是全网,第二个是全程。
第三个叫做全网成交,现在的电商不再简简单单的作为一个电商,而是即有官网又有天猫店,京东店,即有线上店又有线下O2O的店,是一个线上线下的多渠道,用户到哪里成交最有效,我们提供了一个全程的服务,全网的营销,全网的精准和全网的营销,从这个意义上来说对于电商营销的要求越来越高,所以电商企业越来越选择和我们这样第三方的平台进行合作。
新浪科技:现在传统的企业做电商,像一些互联网企业电商肯定是不一样的,它的营销需求也是不一样的,您能分析一下他们有哪一些不同吗?还有就是传统企业做电商面临哪一些变化?
柯细兴:纯互联网的公司做电商没有传统的包袱,要走集约化、集中化、效益化,它的营销要获得订单、获得规模,规模效应再影响供应链。传统企业天生拥有供应链的优势,从这个角度来说他不应该放弃供应链优势向互联网的纯电商来学习。所以说传统电商,传统企业做电商,第一个要结合它的供应链优势。第二个来说要结合它的品牌优势,从这个意义上来说传统企业发展电商的过程是一个渐进式的,他首先要把他线下的品牌变成线上的品牌,把线下的供应链优势变成线上供应链优势。
第二个,传统企业更多的在构筑一个O2O,苏宁易购在构筑线上线下一体化,从这个角度来说,第一个是它发展的路径不一样,第二个是它的商业模式也会发生变化,这两点是传统企业做电商和互联网做电商本质的不同。
至于营销来说可能也会不太一样,营销来说传统企业做电商,第一个它的动作要做的叫品牌收购,要把线上的品牌优势,把线上的用户拉回来,这个阶段我们往往说它的主动点是线下的品牌线上的用户,第二个阶段,是开始给线上的用户,线上品牌,这个时候就进入了一个品牌阶段,所以第一个品牌是收割,第二个是品牌的再造。第三个线上的品牌又回到线下的用户,这个它讲品牌创新,他经历收割、再造到创新,我们营销结合他业务品牌的路径帮他量身订作来设计。
新浪科技:我们亿玛能对互联网企业,或者传统的企业做电商的,能够带来哪一些帮助呢?
柯细兴:第一个毫无疑问,也是我们经常思考的,第一点来说,因为我们在最鲜明的一点是效果,因为我们是12年基于大数据做营销,我们跟直白的给他带来订单,这是最直观的。
第二点就是规模,因为我们覆盖了互联网的成千上万的媒体,我们每天能覆盖的流量是300亿PV,我们每天能够触达的网络用户是85%,网络消费者购买用户,我们积累的这种购买行为数据是10亿的规模,也就是说从个角度来说,我们能够最大范围的,最大规模的帮企业产生订单。
第三点就是服务,我们的专业服务,从初始阶段到发展阶段,到它的创新阶段,我们都能够全程为他服务。总结我们来说,我们公司的3个优势,第一个就是效果,第二个是规模,第三个是我们的专业的服务,这3个加起来是3个S。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22