京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让整个快递业从劳动密集型产业转型为高科技产业
对于快递业,大部分人最直观的感触就是这是一个劳动密集型产业,每天奔跑在大街小巷的快递员就是这个行业最典型的特征。事实上,不管是已经上市的顺丰和通达系,还是背靠大树好乘凉的菜鸟网络和京东快递,早已不再是传统的劳动密集型产业,他们与大数据的联姻至少让这个看起来很low的行业已经变得颇具科技气息。
在阿里巴巴发布的第二季度财报中披露,菜鸟物流平台日均处理包裹4200万个,但菜鸟网络是一个不投身实际快递业务,却掌握中国大部分快递包裹信息的数据公司。通达系由于没有高效的信息管理系统,身上还是有着明显的劳动密集型行业特征,但菜鸟网络则负责提供相应的技术支持,以帮助物流企业提供效率,进而实现智慧物流。
菜鸟网络除了专注于信息平台的搭建外,也非常重视仓配中心的构建。其中,仓配中心的建设给菜鸟网络带来了不小的财务压力,同样在第二季度,菜鸟网络带给阿里的净亏损是2.27亿人民币,比上一季度的9400万大幅增加,其核心原因就是投入巨资在仓配中心上。过去,阿里巴巴常说京东自建物流导致亏损多年,但现在自建仓配中心的阿里巴巴同样摆脱不了这一魔咒。
对此,京东的CEO刘强东的评价则是:“菜鸟网络本质上还是在几个快递公司之上搭建数据系统,说得好听一点提升几家快递公司的效率,说得难听一点,你等着瞧,最后,几家快递公司的大部分利润都会被菜鸟吸走的。”
不管刘强东的评价是否属实,对于快递业来说,拥有强大的信息平台和仓配中心都是核心所在。相比较而言,菜鸟网络如今在这两方面加大投入,多少有点补课的意思。因为对于顺丰和京东来说,早在数年前就已经走过了这样的历程。
以顺丰为例,作为快递业的领导者,他也发明了一系列行业标准,甚至在顺丰内部,他们并不认为自己属于劳动密集型产业:顺丰本质上是一个IT公司,一个大数据公司。
巴枪,是每一个顺丰收派员的标配,这个长得像POS机的机器最早是顺丰开始使用的,它主要有三个功能:打印凭条、运单、发票。当订单信息通过巴枪进入快递信息系统之后,快递的分拣、快递员的调度等等都围绕这一系统开展。应该说,这些顺丰已经完成的部署正是目前菜鸟物流正在做的。
菜鸟网络的物流数据平台通过整合物流公司、商家、消费者以及第三方社会机构的数据,致力于实现物流过程的数字化、可视化。通过物流雷达预警、智能分仓、四级地址库以及电子面单等信息化产品提高物流过程的库存效率、商品处理效率以及送达的准确率。
而在仓配中心建设上,不管是顺丰还是京东,都在全国建立起了许许多多的中心和分中心,以提升快递配送所覆盖的区域。菜鸟物流如今的烧钱就是在补这块短板。
但有趣的是,菜鸟网络像极了阿里巴巴,都是只搭建平台,不做落地的业务。菜鸟网络只提供信息系统和仓配中心,在快递配送上还是借助于通达系来完成。但京东和顺丰则颇为相似,对于京东自营的那部分,京东会通过自身的物流体系完成配送,以便给用户提供更加快速且贴心的服务;而顺丰则完全凭借自己的力量把整个快递全流程都做起来,以保证服务质量。很难说两种模式孰优孰劣,对于快递业来说,菜鸟网络的做法更加高效且灵活,但对于用户来说,顺丰和京东的服务更好、体验更好。
但不管哪一种模式,都对大数据等新兴技术的应用非常依赖,几乎所有的快递企业都在想方设法实现智慧物流,在日趋激烈的竞争中获得更大的优势。比如,顺丰在提升自身大数据应用能力和水平的同时,也在今年上半年推出了数据灯塔。
作为一款服务于电商客户的一款数据产品,数据灯塔基于顺丰快递数据,融合外部数据,通过合理披露供应链、市场、品牌、产品、用户和快递服务等信息,为电商客户提供市场开发、供应链解决方案等方面的决策支持,使客户了解所处行业状况,明确自身行业定位,从而及时响应市场,调整市场策略,发现潜在商机,优化仓储物流。
这在很大程度上已经不再是局限于顺丰一个企业自身的应用,而是变成了一种行业输出,通过大数据的产品和应用推动整个快递业从劳动密集型产业转型为高科技产业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22