京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让整个快递业从劳动密集型产业转型为高科技产业
对于快递业,大部分人最直观的感触就是这是一个劳动密集型产业,每天奔跑在大街小巷的快递员就是这个行业最典型的特征。事实上,不管是已经上市的顺丰和通达系,还是背靠大树好乘凉的菜鸟网络和京东快递,早已不再是传统的劳动密集型产业,他们与大数据的联姻至少让这个看起来很low的行业已经变得颇具科技气息。
在阿里巴巴发布的第二季度财报中披露,菜鸟物流平台日均处理包裹4200万个,但菜鸟网络是一个不投身实际快递业务,却掌握中国大部分快递包裹信息的数据公司。通达系由于没有高效的信息管理系统,身上还是有着明显的劳动密集型行业特征,但菜鸟网络则负责提供相应的技术支持,以帮助物流企业提供效率,进而实现智慧物流。
菜鸟网络除了专注于信息平台的搭建外,也非常重视仓配中心的构建。其中,仓配中心的建设给菜鸟网络带来了不小的财务压力,同样在第二季度,菜鸟网络带给阿里的净亏损是2.27亿人民币,比上一季度的9400万大幅增加,其核心原因就是投入巨资在仓配中心上。过去,阿里巴巴常说京东自建物流导致亏损多年,但现在自建仓配中心的阿里巴巴同样摆脱不了这一魔咒。
对此,京东的CEO刘强东的评价则是:“菜鸟网络本质上还是在几个快递公司之上搭建数据系统,说得好听一点提升几家快递公司的效率,说得难听一点,你等着瞧,最后,几家快递公司的大部分利润都会被菜鸟吸走的。”
不管刘强东的评价是否属实,对于快递业来说,拥有强大的信息平台和仓配中心都是核心所在。相比较而言,菜鸟网络如今在这两方面加大投入,多少有点补课的意思。因为对于顺丰和京东来说,早在数年前就已经走过了这样的历程。
以顺丰为例,作为快递业的领导者,他也发明了一系列行业标准,甚至在顺丰内部,他们并不认为自己属于劳动密集型产业:顺丰本质上是一个IT公司,一个大数据公司。
巴枪,是每一个顺丰收派员的标配,这个长得像POS机的机器最早是顺丰开始使用的,它主要有三个功能:打印凭条、运单、发票。当订单信息通过巴枪进入快递信息系统之后,快递的分拣、快递员的调度等等都围绕这一系统开展。应该说,这些顺丰已经完成的部署正是目前菜鸟物流正在做的。
菜鸟网络的物流数据平台通过整合物流公司、商家、消费者以及第三方社会机构的数据,致力于实现物流过程的数字化、可视化。通过物流雷达预警、智能分仓、四级地址库以及电子面单等信息化产品提高物流过程的库存效率、商品处理效率以及送达的准确率。
而在仓配中心建设上,不管是顺丰还是京东,都在全国建立起了许许多多的中心和分中心,以提升快递配送所覆盖的区域。菜鸟物流如今的烧钱就是在补这块短板。
但有趣的是,菜鸟网络像极了阿里巴巴,都是只搭建平台,不做落地的业务。菜鸟网络只提供信息系统和仓配中心,在快递配送上还是借助于通达系来完成。但京东和顺丰则颇为相似,对于京东自营的那部分,京东会通过自身的物流体系完成配送,以便给用户提供更加快速且贴心的服务;而顺丰则完全凭借自己的力量把整个快递全流程都做起来,以保证服务质量。很难说两种模式孰优孰劣,对于快递业来说,菜鸟网络的做法更加高效且灵活,但对于用户来说,顺丰和京东的服务更好、体验更好。
但不管哪一种模式,都对大数据等新兴技术的应用非常依赖,几乎所有的快递企业都在想方设法实现智慧物流,在日趋激烈的竞争中获得更大的优势。比如,顺丰在提升自身大数据应用能力和水平的同时,也在今年上半年推出了数据灯塔。
作为一款服务于电商客户的一款数据产品,数据灯塔基于顺丰快递数据,融合外部数据,通过合理披露供应链、市场、品牌、产品、用户和快递服务等信息,为电商客户提供市场开发、供应链解决方案等方面的决策支持,使客户了解所处行业状况,明确自身行业定位,从而及时响应市场,调整市场策略,发现潜在商机,优化仓储物流。
这在很大程度上已经不再是局限于顺丰一个企业自身的应用,而是变成了一种行业输出,通过大数据的产品和应用推动整个快递业从劳动密集型产业转型为高科技产业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22