
什么才是真正的大数据征信
随着国家推动社会信用体系建设的步伐不断加快,大数据征信的概念得到广泛传播,已被越来越多的公众所认知。大数据征信代表着未来征信业的发展方向,将深刻改变商业交易模式,成为支撑市场经济健康快速发展的基础性产业。
大数据征信前景广阔,在资本市场、商务合作和终端消费市场,征信产品的需求已经显现出来,金融机构、企业和消费者对通过第三方大数据征信机构在经济活动中考察合作和交易对方的信用状况抱有很大的期待。
目前国内注册成立的征信机构无一例外将发展目标锁定在了大数据征信上。大数据征信首要的工作就是信用信息数据库建设,但目前已建成信用信息数据库的征信机构并不多,这主要是因为我国征信业刚刚起步,发展时间并不长,根据发达国家的经验,建成征信数据库至少需要三到五年的时间。数据库建设滞后导致市场上征信产品和服务并不丰富,这也是我国征信业发展必须要经历的阶段。
然而,一些征信公司在利益的驱使下,在没有建成大数据征信数据库的情况下,却打着大数据征信的幌子,从事信用评估或信用评级的工作,这种行为可谓是欺世盗名,对我国刚刚起步的征信市场也是极大的伤害。
为了杜绝这种欺世盗名行为,就很有必要正本清源。在鱼目混珠的网络世界,多一双辨别真假的慧眼更是很有必要。本文11315征信专员将为你讲解什么是真正的大数据征信,让你对大数据征信有一个充分的认识,轻松识破假冒的大数据征信。
一、大数据征信不仅数据庞大,互联网信息采集技术是关键。
说起大数据征信给人的第一印象就是数据规模庞大。拿11315全国企业征信系统来说,目前为国内 6000余万家信息主体建立了信用档案,录入了包括政府监管信息、行业评价信息、媒体评价信息、金融信贷信息、企业运营信息和市场反馈信息六大方面的信用信息十亿多条。
但这不重要,仅从数据量上来说,传统的信用评级公司经过数据的长年积累也可能做到。关键在于数据的采集上,大数据征信数据库更多地依靠技术能力聚合有关企业或个人有效信用数据,并录入基础数据库,纳入相关企业或个人的信用档案中。
正是通过互联网技术,才能让信用信息数据库迅速汇集、冲洗出鲜活的信用信息,11315所采用的正是这种技术。如果一些征信公司没有数据库,或者数据库里只有一些企业的基本信息,就标榜自己是大数据征信,就值得警惕了,很可能你遇到的就是虚假的大数据征信。
二、数据库及时录入很重要,实现企业信用的动态评估。
除了能够通过互联网技术全面采集企业或个人的信用信息外,大数据的另一个显著特征是,对及时捕捉来的数据进行适时分析,由基础数据库纳入数据评估系统。
比如当前一家企业的信用评级良好,下一刻在质监部门或新闻媒体就有可能发布关于这家企业的负面信息,大数据征信数据征信就要能够实时捕捉到这些信息,并通过系统内置的数据计算模型,对数据进行交互处理,对企业的信用状况进行重新评估更新,让公众能够及时了解到企业最新的信用信息,也就是说在大数据征信机制下,企业或个人的征信状况是动态变化的,比如11315全国企业征信系统通过互联网技术采集企业信用数据,每每分钟就能对系统数据进行一次更新,这就是大数据征信的独特魅力。
传统征信机构的普遍做法是,征信公司向企业发出资料清单,依据企业提交的信息资料、辅以对企业短时间的财务分析,对企业进行信用评估,并标注有效期一年、两年、三年,这和大数据征信机制完全相悖。
还有一些征信机构只要交钱就能给颁发信用评级证书或牌匾,信用评级证书和牌匾也是五花八门,企业需要什么样的证书和牌匾,就给发什么样的证书和牌匾,信用等级能评多高,也很随意,或者完全是企业交多少钱就给什么样的等级。就如前段时间被民政部曝光的山寨协会“中国产品质量协会”就是这么干的,“21315中国产品质量协会贩卖虚假牌匾杂货铺诈骗”也被多家新闻媒体曝光。
三、通过统一数学模型进行信用评级。
传统征信更多地是依靠人为的、主观的因素来评级,通过分析师或信用评估从业者对企业提报的资料经过分析而做出企业的信用评定。而大数据征信面对的是海量的企业或个人的信用数据,依靠人工来分析评级很不现实,大数据征信下的信用评级是通过系统内统一的数学计算模型,对企业或个人的信用信息进行计算,并得出相关企业或个人的信用分值和信用等级。大数据征信所采用统一数学模型的信用评级,更具客观性,效率也大大提高。
四、实时出具信用报告。
通过统一数学模型对企业或个人进行信用评级的同时,征信系统能够实时为企业和个人出具信用报告。比如说,传统征信模式通过调查、资料分析和信用评级,要出一份信用报告,至少需要2周或更长的时间,而大数据征信通过系统广泛采集企业的信用信息,可以做到信用报告直接在线下载打印,这是传统的征信模式所无法比拟的。
如果你对大数据征信还比较陌生的话,通过以上几个特征,对大数据征信就会有一个比较清晰的认识,什么是传统征信,什么是大数据征信,打着大数据征信的幌子来欺世盗名的,就会很容易识破,不至于上当受骗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18