
什么才是真正的大数据征信
随着国家推动社会信用体系建设的步伐不断加快,大数据征信的概念得到广泛传播,已被越来越多的公众所认知。大数据征信代表着未来征信业的发展方向,将深刻改变商业交易模式,成为支撑市场经济健康快速发展的基础性产业。
大数据征信前景广阔,在资本市场、商务合作和终端消费市场,征信产品的需求已经显现出来,金融机构、企业和消费者对通过第三方大数据征信机构在经济活动中考察合作和交易对方的信用状况抱有很大的期待。
目前国内注册成立的征信机构无一例外将发展目标锁定在了大数据征信上。大数据征信首要的工作就是信用信息数据库建设,但目前已建成信用信息数据库的征信机构并不多,这主要是因为我国征信业刚刚起步,发展时间并不长,根据发达国家的经验,建成征信数据库至少需要三到五年的时间。数据库建设滞后导致市场上征信产品和服务并不丰富,这也是我国征信业发展必须要经历的阶段。
然而,一些征信公司在利益的驱使下,在没有建成大数据征信数据库的情况下,却打着大数据征信的幌子,从事信用评估或信用评级的工作,这种行为可谓是欺世盗名,对我国刚刚起步的征信市场也是极大的伤害。
为了杜绝这种欺世盗名行为,就很有必要正本清源。在鱼目混珠的网络世界,多一双辨别真假的慧眼更是很有必要。本文11315征信专员将为你讲解什么是真正的大数据征信,让你对大数据征信有一个充分的认识,轻松识破假冒的大数据征信。
一、大数据征信不仅数据庞大,互联网信息采集技术是关键。
说起大数据征信给人的第一印象就是数据规模庞大。拿11315全国企业征信系统来说,目前为国内 6000余万家信息主体建立了信用档案,录入了包括政府监管信息、行业评价信息、媒体评价信息、金融信贷信息、企业运营信息和市场反馈信息六大方面的信用信息十亿多条。
但这不重要,仅从数据量上来说,传统的信用评级公司经过数据的长年积累也可能做到。关键在于数据的采集上,大数据征信数据库更多地依靠技术能力聚合有关企业或个人有效信用数据,并录入基础数据库,纳入相关企业或个人的信用档案中。
正是通过互联网技术,才能让信用信息数据库迅速汇集、冲洗出鲜活的信用信息,11315所采用的正是这种技术。如果一些征信公司没有数据库,或者数据库里只有一些企业的基本信息,就标榜自己是大数据征信,就值得警惕了,很可能你遇到的就是虚假的大数据征信。
二、数据库及时录入很重要,实现企业信用的动态评估。
除了能够通过互联网技术全面采集企业或个人的信用信息外,大数据的另一个显著特征是,对及时捕捉来的数据进行适时分析,由基础数据库纳入数据评估系统。
比如当前一家企业的信用评级良好,下一刻在质监部门或新闻媒体就有可能发布关于这家企业的负面信息,大数据征信数据征信就要能够实时捕捉到这些信息,并通过系统内置的数据计算模型,对数据进行交互处理,对企业的信用状况进行重新评估更新,让公众能够及时了解到企业最新的信用信息,也就是说在大数据征信机制下,企业或个人的征信状况是动态变化的,比如11315全国企业征信系统通过互联网技术采集企业信用数据,每每分钟就能对系统数据进行一次更新,这就是大数据征信的独特魅力。
传统征信机构的普遍做法是,征信公司向企业发出资料清单,依据企业提交的信息资料、辅以对企业短时间的财务分析,对企业进行信用评估,并标注有效期一年、两年、三年,这和大数据征信机制完全相悖。
还有一些征信机构只要交钱就能给颁发信用评级证书或牌匾,信用评级证书和牌匾也是五花八门,企业需要什么样的证书和牌匾,就给发什么样的证书和牌匾,信用等级能评多高,也很随意,或者完全是企业交多少钱就给什么样的等级。就如前段时间被民政部曝光的山寨协会“中国产品质量协会”就是这么干的,“21315中国产品质量协会贩卖虚假牌匾杂货铺诈骗”也被多家新闻媒体曝光。
三、通过统一数学模型进行信用评级。
传统征信更多地是依靠人为的、主观的因素来评级,通过分析师或信用评估从业者对企业提报的资料经过分析而做出企业的信用评定。而大数据征信面对的是海量的企业或个人的信用数据,依靠人工来分析评级很不现实,大数据征信下的信用评级是通过系统内统一的数学计算模型,对企业或个人的信用信息进行计算,并得出相关企业或个人的信用分值和信用等级。大数据征信所采用统一数学模型的信用评级,更具客观性,效率也大大提高。
四、实时出具信用报告。
通过统一数学模型对企业或个人进行信用评级的同时,征信系统能够实时为企业和个人出具信用报告。比如说,传统征信模式通过调查、资料分析和信用评级,要出一份信用报告,至少需要2周或更长的时间,而大数据征信通过系统广泛采集企业的信用信息,可以做到信用报告直接在线下载打印,这是传统的征信模式所无法比拟的。
如果你对大数据征信还比较陌生的话,通过以上几个特征,对大数据征信就会有一个比较清晰的认识,什么是传统征信,什么是大数据征信,打着大数据征信的幌子来欺世盗名的,就会很容易识破,不至于上当受骗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29