京公网安备 11010802034615号
经营许可证编号:京B2-20210330
医疗大数据新政或带动行业扩张
6月24日,国务院办公厅正式印发了《关于促进和规范健康医疗大数据应用发展的指导意见》(以下简称《意见》),规范和推动政府健康医疗信息系统和公众健康医疗数据互联融合开放共享。从《意见》来看,医疗大数据的应用市场或迎来一定的发展机会。从市场需求来看,医疗大数据资源未来的机会可能包括B端和C端两个方面。
B端数据机会或从区域突破
首先是区域医疗体建立所促进的数据整合和应用机会。从《意见》来看,国家的重大任务包括“推动健康医疗大数据资源共享开放。鼓励各类医疗卫生机构推进健康医疗大数据采集、存储,加强应用支撑和运维技术保障,打通数据资源共享通”。从商业化操作角度来看,这一目标最有可能在现有区域医疗体内实现。事实上已经有一些城市或城市片区进行了上下级医疗联合体的尝试,比如绍兴的区域心电体系,上海嘉定的区域影像医疗体系等。在这些片区医疗中,从某一类别的医疗服务进行突破,整合病人病历、检查资料,在上下级医疗机构之间互认互通,将有助于建立完整的某一类别的区域医疗档案,这样产生的数据才有可能是连续完整的并有可能作为后续应用的基础。
在这一类片区数据和医疗服务的建立中,对于硬件公司、软件公司来说,有机会将业务从产品销售拓展到数据库的建立以及分析中,但难点也同样在此,对于大部分产品为导向的公司来说,医疗服务的特性是每个B端机构都有较高的个性化需求,这也加大了数据的割裂和融合难度。因此,当产品衍生到数据服务,这些公司需要把战略重心转移到产品背后所能够促进的兼容和数据整合上,包括来自多平台数据的整合以及多种类数据的整合,这会是软件和硬件公司未来切入数据的竞争点。
因此,这类数据融合的政策虽然为现有厂商提供了转型的市场机会,但也对其自身的发展提出了较高的要求。软硬件公司都需要加大其服务提供能力,而不仅是基于技术的延伸。从国外市场的演进来看,这类数据服务的整合一开始可能还是从厂商和第三方服务商发合作开始,发展到市场初步成熟阶段可能会加大市场整合,行业并购机会将会产生。
C端机会在于整合 或淘汰小供应商
同时,在C端的应用上,《意见》还指出,”鼓励社会力量参与,整合线上线下资源,规范医疗物联网和健康医疗应用程序(APP)管理,大力推进互联网健康咨询、网上预约分诊、移动支付和检查检验结果查询、随访跟踪等应用”。目前有非常多的针对C端的工具,但背后收集到的数据有非常大的问题,主要体现在不连贯、真实性有问题、分类不明确难以进行数据应用这三点上。而且各类机构有非常不同的线上线下数据应用平台,服务也很不一样,这给收集并应用C端数据带来很大困难。
未来更有可能出现的是从区域医疗出发,能够进行上下整合和打通的数据应用工具,采购的主体也有可能从分散的机构上升到区域医疗的管理者。这样在整个区域之内,才有可能打通预约、支付、检查查询互认、随访跟踪等环节,避免数据应用多重性导致的数据混乱和不连贯。但这种区域医疗体系对工具的性能、整合能力的要求都会比较高,如果未来从数据融合的角度看,小型、不具备完整工具提供功能和数据分析能力的公司可能会被市场淘汰,而崛起的将会是能够提供整套健康服务工具解决方案并支持数据整合的供应商。
因此,目前医疗信息服务领域的碎片化状态或将获得很大改观。不过,医疗大数据的获取和整合并不容易,因为中国医疗体系的信息孤岛是行业痼疾,要在短期内有很大改观是非常困难的。在分级诊疗的推动下,区域内的上下层级互动或是一个突破口,但这一方向的前提是基层的入口效应需要非常明确,强基层能否落到实处才是关键。
总体来看,《意见》确实能带来一定的市场机会,不过具体的机会点需要参考各地的细化政策和仔细研判各个细分市场的需求。短期来看,医疗大数据领域目前仍高度受政策影响,行业大扩张仍需时日。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26