京公网安备 11010802034615号
经营许可证编号:京B2-20210330
移动大数据正重塑现代医疗产业
医疗领域在数字时代做了数十年的落后者,但是去年以来,超过37亿美元的风投资金被投向了与移动大数据技术相关的现代医疗领域,才使人们重新认识到现代医疗将是风投手里的下一个“蓝筹股”。
据统计,这37亿多美元的投资中有7.5亿投进了与移动健康相关的各领域,比如将智能手机变为一支血压计和用手机拍摄达到医疗品质的内耳照片等项目。这刺激了包括苹果、高通、微软等在内的科技巨头着手开发移动健康产品或投资此类项目。另外的30多亿美元主要进入了医疗大数据领域。据麦肯锡公司的估计,医疗大数据领域所蕴含的商机每年高达3000到4500亿美元以上,这主要包含数据采集类智能手机的研发应用和超强数据分析系统等领域。
投资热背后的理念其实很简单:智能手机的应用意味着小而廉宜的传感器、低耗能蓝牙传输的普及,这些成为数据采集和传输以及医生指导和介入的天然终端;而高速移动网络、基因序列解析等取得的进展以及电脑分析软件的优化,使得科学处理海量医疗健康信息成为可能。如同移动技术和大数据对其他领域的影响一样,这两项技术也正在深远影响乃至重塑现代医疗业。
首先,移动健康项目改变了医疗业中原有的医患互动方式。在方便地、即时地收集患者信息后,移动技术通过为医生提供即时、高频、远程介入影响患者的机会,使病人在医疗活动中的作用被积极调动。
美国正在开展的一项利用移动技术监测糖尿病人活动量的移动医疗项目。在该项目中,运算程序会依据病人随身携带的监测仪收集到病人的运动量信息,并将其和数据库中已有的病历自动对比,自动将某种针对性指导信息或医嘱反馈给病人,比如:那些没有达到目标活动量的测试者会收到鼓励消息;有时仪器还会基于病人的移动设备收集到的位置信息提供健康课程等资料,甚至在阴雨天会给病人发送关于室内锻炼方式的提醒。同时监测仪器收集的数据可以加上医生的诊断、过往测试结果、病人的病历以及基因数据,来帮助医生在办公室就能预判病人是否易感某些症状或病人的治疗将如何进展。
另外,医疗大数据正通过对个体患者大量医疗信息的分析,将传统上旨在治疗标准患者的医疗习惯,改变为针对个体患者的“定制医疗”。
目前掌握最多医疗数据的主要是保险公司和医疗机构及医生,对他们的数据进行分析已经开始改变医疗现状。北美最大的药品福利管理、保健管理和经营服务公司Express Scripts(该公司管理着美国9千万会员的药品福利和每年14亿份处方)已经全面疏理其获得的来自医生、药房和实验室的数据,以便可以提醒医生潜在的药物不良反应及其它处方问题。现在Express Scripts服务的医生可以提前12个月知道哪位病人可能无法按要求服药,其准确率高达98%。通过该项目预先采取措施避免可能出现这些问题无疑可以改善病人健康,同时美国每年节省在不必要的急诊出诊和治疗上的花费多达3000多亿美元。医疗大数据还需增加更多层面的信息以达到更高的精准率和更具针对性的治疗结果,它正使数字时代的现代医疗变得更具可分析性和可循证性。
总之,移动和大数据两项主流技术对当代医疗的影响并不是彼此独立而是相互交织,其共同影响的结果是更好地改善了病人的健康状况、减少医疗资源的浪费和降低了医疗费用,进而从根本上改变医疗服务的分配,并最终改善整体的医疗方式和环境。
专注慢性病数据管理的移动技术公司WellDoc的首席战略官曾称医疗大数据和移动医疗为是“史上最大型的临床试验之一”。移动大数据技术对医疗界、保险公司以及病人的影响都是颇具说服力的。哈佛大学医学院教授BID(Beth Israel Deaconess)医疗中心的首席信息官John M. Halamka期待这类以科技为依托的现代医疗可以在不远的将来成为医疗界的常规作法。
无论如何,当下就把移动技术和大数据对医疗业的重塑说清楚还为时尚早,但数字时代带给当代医疗界的巨大进步已是不争的事实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08