京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创业,绕开BAT,找准红利方可成功
随着大数据时代的到来,其中产业链的红利也将逐渐呈现,催生了诸多相关的创业项目。笔者以一家定义为大数据加工、分析、流通的创业公司“云见”为例,探讨下数据在流通过程中增值的可能性。
大数据的红利在哪?
处在大数据最上游的是数据产生端,其中最有代表性的是BAT这样的企业。与数据生存者对应的另一端是需求端,即服务主体,同样是包括政府、机构、企业、个人。而处在中间的则是数据的处理加工商,如云见这类公司。
那么,红利在哪里呢?首先,数据生产端红利已尽。BAT因为自有数据资源可以自嗨,比如百度有“百度迁徙”、“百度精算”;阿里有 “阿里云”、“支付宝-花呗”;腾讯有 “腾讯云分析”,BAT自产自销模式代表了大部分拥有数据源的玩家。
那么剩下的红利就集中在了中间部分,其中有两种模式:
模式一:与业务场景结合,做产业类平台,如同花顺、恒生电子。
模式二:数据的再加工利用,即从运营商、互联网公司获取原始数据信息来进行分析,再提供给用户关于价值和趋势的信息以换取价值。
相比于模式一的深耕,模式二因为进入门槛、资源要求度都相对较低,所以云见选择以这种形式进行切入。
既然类似云见这样的小微企业,先天没有数据源的优势,那么如何让数据在流通过程中增值呢?
让数据在流通过程中增值的方法
(1)降低数据来源的成本
最普遍的方法包括通过第三方购买数据、爬虫爬回数据、合作方授权数据、免费的开放数据。数据获取中肯定要付出人力、资金成本,所以解决数据源是大数据创业公司首要面临的问题。
目前行业做得较创新的是“数据堂”,这家作为挂牌新三板的第一个大数据资源公司,采用“众包”形式,由服务企业提出需求,数据堂直接通过众客堂采集数据。同时,众客堂用户也是处理数据的方式,可甄别数据真伪和有效性。
当然,相比于成熟型的数据公司,云见还未具备这样的数据采集实力,所以其倾向于用合作授权数据的形式,低成本获得独家数据源。
(2)着眼于未来的数据加工
数据加工包括整理合并、优化、排错等方面,数据本身庞杂无章,精炼后的数据能够发掘其中的规律性而进行精准应用。当然,这只是数据加工的通用价值,大数据创业公司关键要解决数据价值深化或兑现的问题。
云见做出两个选择:
与垂直领域对接发现价值
因为消费升级、移动互联网的人口红利消失,那些大规模的对受众社会属性不加区分的水平产品很难生产。在大数据时代,通用型信息的价值正减小,任何拥有数据加工能力的人都可说出用户画像,但针对垂直领域的数据价值需求则需深耕才能解决。
预测未来比看见现在更重要
云见从成立之初就专注在“算法”上,用模式识别的方式形成自己的经验库以预测用户的未来行为,区别于竞争对手赚解决方案服务费的方式,这也符合其技术驱动型团队的特点——更看中“稳”而不是“快”。
(3)用“mall”的形式
作为大数据元老级公司的“数据堂”15年推出了国内第一家网上数据商城“Data Mall”,数据商城的形式最大化地提高了数据交易效率,简单理解就是在通用的入口,用户可以进行重复消费;同时,平台方通过商城获得接入用户的机会,用户成为“传感器”——作为流量入口,又将数据反馈至商城上,担任消费端和供给端的双重角色。
云见也在筹建这样的“轻模式”,除了上述提及的优势,考虑到基于用户需求的非标准化特性,API接口(应用程序编程接口)本身是很难进行标准化的,所以“mall”的呈现方式在一定程度上解决了API形式上的标准化,同时,“mall”改变了传统打包服务的模式,减少在销售、推广、人力上的成本。
当然,大数据创业的成功还有一部分因素是依赖在大势上。
(4)政策上的大势
2015年7月,国务院办公厅发布《关于运用大数据加强对市场主体服务和监管的若干意见》,这是顺应大数据时代潮流,运用现代信息技术加强政府公共服务和市场监管,推动简政放权和政府职能转变的重要政策文件。
文件表示将充分认识运用大数据加强对市场主体服务和监管的重要性、运用大数据提高为市场主体服务水平、运用大数据加强和改进市场监管、推进政府和社会信息资源开放共享、提高政府运用大数据的能力和积极培育和发展社会化征信服务等。
(5)行业上的机会
目前较有代表性的大数据公司是“数据堂”和“聚合数据”,共同特点是拥有如BAT量级的大B用户。但相当部分的小B企业以及政府决策、公共服务、金融、电信等领域对数据存在需求,再加上数据供给端也出现了多元化的现状,所以大数据行业本身很难做到一家独大,类似于云见这样较小型的数据处理公司还是有机会在其中馋食大数据的红利。
创业的机会在哪里
池静若认为现在大数据产业链才开始发展,大众都把目光聚焦在大数据的两端:一是谁拥有这些数据,二是这些数据到底如何使用。但仅仅在两端是不能解决大数据问题的。
大数据产业的大量机会出现在中间环节,包括采集、聚合、机器学习加工后的数据通过智能管道合法流入到用户的手里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14