
有了爱情大数据,你再不会选错人
那爱情跟大数据是什么关系?我今天要讲的是从另外一个视角来看爱情。我的观念是爱情如同其他的一些感情上的行为一样,可以被数字化、数据化、数学化。
爱情和大数据走到一起了,意味着我们能以更多的智能,通过数学的方法,用现在所能得到的数据,以及大量使用的数字媒体来真正得到对爱情的洞察。
这里面的关键词是选择、匹配、预测。
就像我们很多行为可以在线上进行,约会也可以,这就叫在线约会。在线,意味着约会这个体验不再是不被记录的行为,而是被数字化了。
只要上了网,你每个点击、每个浏览、每一次打开网站,你就被记录了,数字化很自然地成为事实。
在数字化的过程中产生了数据,数据是有目的的数字组合,使得我们知道发生了什么事、有什么统计上的行为或者规律可以遵循。
美国差不多有四千多万人在线约会、找朋友、找情人、找今后长期的伴侣。
每一次他们做在线约会浏览时,大约耗时22分钟,一个星期内耗时12个小时,这是平均数。美国每十个人当中有一个人,曾经使用过类似的网站或者移动APP做在线约会规划。
66%的人通过在线软件的应用以后,他们又往前走了一步——确实去约会了,这个约会是真正现实中的行为,不是一个数字行为。
其中又有23%是真正地通过这些应用,找到了自己的配偶或者是长期的伴侣。
但另一方面,它也出现了一些以前没有的问题——信息的可靠性。56%的用户感觉到在网上的个人介绍往往是被夸大的,很大程度上误导了事实,造成了很大的麻烦。
81%的用户说自己曾经在某一项的描述当中撒了谎,其中包括谎报自己的体重,女性尤其爱往低评估;48%谎报了身高,男性在这方面尤其突出;19%谎报年纪,可能男性女性大约相同。
这些问题引起我的深思,这样一个平台上,好像数字、数据都很方便了,但是不是真正为我们服务了呢?如果没有这么多假的信息,利用拥有几千万的网络用户的软件,我们的恋爱、约会是不是能够效率更高一点?
有一个女记者Amy Webb,她也是一个未来学家,她喜欢想象未来是怎么回事。她做了一个尝试,在一个专门给犹太族裔的人群找配偶的网站上试验在线约会。
她在上面反复试验了很多次,但发布常规的信息比如说很懂日文、自己做了几年的记者等,却在找对象方面遇到很多挫折。
Amy就想,既然网站上有这么多数据,我为什么不能做一个数据分析呢?所以她做了两件事。
第一,她重点考虑了她所关心的男性对象的属性。每一次网站说,你可以跟这些人去约会,她就看一下这些人的属性是不是符合她的要求。
符合的她加一分,不符合的减一分。通过这种比较初级的方式,筛掉了很多本来网站推荐她去见一面的人。
第二,她意识到能找到心目中理想的人,并不是意味着那个理想的人也会看中她,这里面有很多竞争——她看中的这个男性,也可能会被很多的女生看中,她们会怎么接近他?
所以她用自己的模型,建立了一个分数,通过这个分数产生了十个假设的男性。
这些男性会留意到什么样的女性,会怎样和她联系约会。通过这些假设,她开始知道在介绍自己的时候,应当注重哪些方面,用什么样的语言能够成功引起注意。
这十个男性可能实际上不存在,但她至少用计分的方法算出,如果能找到类似男性的话,对她相当合适。
果然按照上述方法尝试几次后,她找到了自己最爱的一个男人,然后马上就组成了家庭,有了孩子。
这说明了什么问题?
从恋爱没有经过数字媒体,到有了数字媒体产生了数据,再到通过Amy的尝试,大家可以看到:数据可以帮助你把感情的事情理性化,从数字里看到一些自己可努力的方向,大量减少自己要搜寻的工作,使得爱情在有限时间、有限资源的情况下得到最好实现。
说到资源、选择、匹配,它能让一般的爱情有更多更广泛的内涵。
第一、 爱情可以被数字化、数据化,今天我们还可以把它数学化。
第二、 爱情大数据的作用已经被意识到了,大家都在开展这方面的应用。
应用到什么程度了呢?因为今天有很好的传感器、很多的摄影机、造像、信息处理、图象处理技术,一个男性说,我要找有范冰冰脸的女性,那他就可以发现很多有类似容貌的女性,而不是像以前那样,只能用模糊的数据描述这是女的、现在多大年纪。
第三、 爱情本身是一个选择匹配和预测的人类行为。
这种行为不止于谈情说爱,还能用在比如招聘、求学等选择领域,公司在找你,你也在找公司;你要选一个适合自己的最好大学,大学也在选你……
双向选择的过程几乎到处都有,我们对爱情大数据的研究,也不会仅限于对爱情的研究,对所有这些双向现象都要研究。
我的创业公司正在把基本的数字、数据和数学能力糅合,形成有力的产品,帮助大家对爱情产生更多深刻的认识,也是从数据能力上解答一个几千年、几万年的人类婚恋难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18