京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业顶层规划出炉 如何实现
数据产业发展顶层规划也给出了明确的“创新导向”:计划在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
纲要的出炉也被认为是我国继“互联网+”行动后,进一步从顶层规划上明晰大数据、云计算、移动互联、人工智能等前沿技术发展规划。
用友网络董事长王文京认为,移动互联网、云计算、大数据等正成为社会发展、经济增长的重要驱动,数据资产也成为人类社会继财富资产、人力资产等之后的“第四种资产”,其重要性不言而喻。
中国科学院院士、北京大学教授鄂维南认为,大数据正改变着实体经济与产业格局。例如,基于大数据的计算广告学改变了传统广告行业;一些企业正深入研究非结构化数据处理,以改变传统产业。
聚焦人才培养
各界人士认为,大数据作为新的计算方式,其对产业、实体经济的影响将极其深远。然而,以产业需求为导向的创新研发亟待提升,国内“数据人才”培养也需要进一步优化,以适应市场需求。
首先,以产业需求为导向,成果及时落地转化,企业主体创新力量须得到调动。
“在中国,数据科学发展的很多研究源于市场需求。比如,监控视频处理就是很重要的应用场景。如何让电脑对图像数据进行突破,可以智能判断,这就是很好的大数据科研突破口。”鄂维南说,尽管目前国内大数据产业发展很快,但也存在着缺乏以市场需求为导向的创新突破等问题。
各方认为,唯有释放企业的创新活力,才能推动大数据关键领域取得突破,促进大数据科研成果转化为实际成果。
其次,符合市场需求的人才培养应得到重视。
北京大学校长林建华认为,进入数据时代,人们对获取、存储、分析、处理数据的能力亟待提升。因此,数据科学人才培养成为急需加强的方面。“可以看到产业内很多大企业用非常大的资源,争取学术界数据人才,各方面拉人才。可以说,大数据能否做成,关键在能不能聚焦人才培养。”
而高校和产业界普遍认为,当前对大数据人才的培养仍相对滞后。北京航空航天大学软件学院院长孙伟认为,传统IT教育很难将前沿技术和课堂传授知识结合起来,培养人才很难及时与产业接轨。高校创新人才培养应更加面向市场需求、技术前沿。
以新模式助大数据产业突破
分析认为,国内产业界对数据科学的前沿探索已经加速推进,部分高校也开始了“数据科学家”的培养。在此背景下,我国应进一步打通壁垒,以新模式探索产学研用结合,培育数据人才、助推以市场为导向的数据科学研究突破,促进产业加速发展。
调查发现,以北京中关村为例,大数据已经在商业、金融、交通、医疗、教育等行业示范应用,100多家大数据创新企业从不同领域深植数据资源。
同时,北京航空航天大学、浙江大学等高校与阿里云、慧科教育达成合作,计划3年内培养和认证5万名云计算和数据科学工作者。这些为数据人才培养提供产业与教育基础。
模式的探索已现雏形。北京中关村管委会、海淀区政府、北京大学和北京工业大学等四方启动“北京大数据研究院”,启动建立大数据高精尖创新中心,推动人才培养和科研突破;并成立股份制技术成果转化中心,围绕热点领域产业需求,推动关键共性技术研发、行业大数据分析、成果转化等。
鄂维南透露,研究院将主要聚焦包括交通大数据、金融大数据、移动互联网大数据、医疗大数据等方面,整合分析资源,支撑决策与产业发展。计划一到两年内,研究院将建立数据金融、医疗健康、交通数据、智慧城市、能源环境和气象等分中心,涉及数据与生物、化学、天体、神经科学等学科的交叉研究。
各界认为,这种灵活的产学研结合机制将成为推动大数据快速发展的有效手段。
王文京说,创新机制将有助于创新人才及时对接市场需求,让大数据切实影响改变产业现状
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20