京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据变革传统投研模式
正是看到了大数据的前景和突破性,博时基金一直在往这方面发力。无论是在研究方法、理念,还是在成果方面,博时基金已有优势。
继2015年初与蚂蚁金服合作推出淘金100大数据指数后,日前,博时基金又和雪球合作推出了雪球智选大数据100指数。对于大数据基金,博时基金副总裁王德英表示,大数据正在改变传统的投研模式,未来博时还将推出一系列大数据基金。
打造大数据基金超市
无论是A股市场,还是海外市场,通过大数据进行量化投资可谓方兴未艾。博时基金早在2009年就已经布局量化投资,随着博时量化模型逐渐成熟,结合“互联网+”的大数据发展趋势,博时基金正在打造大数据基金超市。
据了解,2015年初,博时基金和蚂蚁金服合作,推出了国内第一只电商大数据指数——淘金100。此外,博时基金还与银联、雪球、搜房网合作,推出了银联智惠100、雪球智选100、房地产大数据等3只大数据指数,博时基金还将与多个不同领域/行业的龙头企业开展合作,不断扩展大数据领域。
据介绍,博时基金此次与雪球合作推出的雪球智选大数据100指数,主要是从海量的雪球投资组合中挖掘投资达人的交易热度信号,聚焦组合管理人交易行为。
王德英解释,决定个股股价的因素主要在于两方面,一是公司基本面,二是投资者情绪,大数据基金主要在这两方面着手。此次博时基金和雪球合作的大数据产品,主要是从过往业绩优异的雪球模拟组合中找到有价值的信息。其逻辑在于,雪球模拟组合过往业绩优异的选手选股和选时有独特性,通过对这些模拟组合筛选找到有价值的公司,然后结合综合财务因子、市场驱动因子、雪球热度因子,与其相应近期及长期历史表现之间的相关性作为加权依据,对这3类因子得分进行加权计算,股票综合评分前100只股票即为博时雪球智选大数据100指数基金样本股。
雪球智选大数据100指数以2012年12月31日为基日,以该日收盘后所有样本股的调整市值为基期,以1000点为基点。模拟数据显示,自基日以来到2015年8月14日,该指数累计收益率为379.64%,年化收益率达78.7%。
变革投研模式
从近年各类基金在投资上的表现来看,大数据基金已经崭露头角。王德英表示,传统投资方式主要是投研人员去上市公司调研,了解财务数据、行业信息等来做投资决策,而大数据基金通过海量数据分析,数据量更大,数据维度更全,数据更及时,因此,对公司未来表现的预测确定性更强,从这个角度说,大数据基金正在改变或升级传统的投研方式。
据介绍,大数据技术是利用海量的互联网大数据,如搜索热度、关注度、订单数、成交额、消费笔数等多维度的数据,通过量化模型,更早、更快、更准预判某个行业或者企业未来的景气程度或市场热度。基金公司综合大数据因子、财务价值因子、市场驱动因子等,精选出最具投资价值的个股组合编制成指数。
王德英表示,正是看到了大数据的前景和突破性,博时基金一直在往这方面发力。从时间上来说,博时基金从2009年起开始从华尔街引入量化人才,建立量化投资系统。从模型应用来看,以2014年为例,博时沪深300(3403.850, 38.02,1.13%)指数基金超额收益超过了9%。因此,无论是在研究方法、理念,还是在成果方面,博时基金已有优势。
从人才储备和队伍建设来说,目前博时基金已经在大数据产品上进行了战略布局,整个项目从商务洽谈、数据开发、指数编制、产品成立和产品销售都已成体系,其中,具体负责数据研发的是指数投资部,整个团队有11个人;同时,互联网金融部有专人负责与互联网大数据企业对接。
在有效性方面,博时基金表示,通过对较为长期的历史数据采用科学严格的回测方法,大数据因子确有显著的有效性。这是由数据的及时性及大数据与公司基本面和市场情绪方面的内在逻辑决定的。从实践结果看,大数据因子对于股市往往会有3到6个月的领先性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22