
如何妙用“小数据”
营销的最高成就是与客户建立一对一的联系——为每个独立买家或潜在客户提供最相关的信息和产品——而大数据则很难帮你实现这样的私人沟通。企业需要有能力收集和利用每个客户的个人喜好和行为。换句话说,他们同样需要“小数据”。
“小数据”被定义为客户的特定信息, 如客户的购买历史和其他被企业CRM系统定期收集的信息,以及客户的偏好和行为的信息,这可以从客户日常使用的技术产品中获得,比如他使用智能手机还是其他可穿戴科技设备来网站访问,社交媒体动态。
从事小数据使用与分析研究的企业信息管理公司Open Text产品营销与创新副总裁Allen Boned指出:大数据从数不清的人或电脑系统中获取数据,试图创造某一年龄组或某一特定人群的专属模型;而小数据是与某一个人直接相关的个性化数据,帮助营销人员理解个人的微妙行为与需求,并针对这些需求,实时奉上个性化的营销信息或产品。
小数据还包括从带有传感器的设备上收集的设备数据,与设备环境和设备使用带来的本地化信息。换句话说,小数据是连续的、实时的物联网输出。“小数据从本质上讲是物联网的操作系统,”Allen Boned说,“你有很多相互连接的设备,每一个都有很多本地信息,在某些情况下,就是相对简单的信息。”这意味着小数据对于日常的市场营销工作来说更易于操作,他说。
关键是要清楚如何将大数据采集自目标受众的洞见与通过小数据分析获得的设备特定信息有效结合,全面了解目标受众的情况。下面是一些需要重点考虑的因素:
1. 定义你的目标。小数据可以让营销人员细致的观察现有和潜在的客户,不仅了解他们正在做什么,而且了解他们为什么这样做以及他们怎样做到的。 “一种理解是客户轮廓构建,” Bonde说。 “我们如何创造更完整的客户形象 ?当你开始回答这个问题,它会触及更大的问题,这就是,在哪里找到合适的小数据使用?”
数据管理和分析公司Prosper Technologies的CEO,Gary Drenik补充说:“这需要企业有能力整合不同的数据源,加以分析,以应对你面临的问题……小数据是一项选择相关的数据并加以分析的工作,你可以利用其来运作你的业务,推出或调整市场活动。优质的小数据出乎人们的医疗,”他说,“人很难搞清楚自己想要什么,所以营销人员愿意做调研,并在此基础上做假设。小数据的作用是针对个人的,帮助企业更好的了解个人。营销人员真要回答的问题不是‘这是什么?’而应该是‘为什么会有这样的结果?’以及‘我们能否改变他们?’”
2. 利用你已经拥有的信息。“小数据的世界就是利用你周围现成的数据,” Bonde说。“举例来说,使用销售终端的数据或你的网站点击量……这意味着采用普通人能够理解的度量标准和工具, 而非只有数据科学家和统计学家才能理解。这也是小型企业一贯的做法。”小企业客户群比较小, 所以他们能更好挖掘个人客户的需求和喜好, 甚至可以通过非正式的方式更好服务每一个客户, 比方说你常去的煎饼果子摊老板可能会为你多加一个蛋一样。
专家指出,只要企业能搭建一个紧凑的小数据分析战略,它们就可以从获取的客户具体洞见中受益。例如,“我有很多客户希望真正了解其在数字营销领域的努力是否有所回报,”内容营销分析公司 Content Science的首席执行官Colleen Jones(她多年来一直致力于用小数据帮助企业打造战略型内容营销活动)表示,“与大数据相比, 小数据更容易获取,汇报给营销人员和以及其内容营销团队, 方便他们理解和采取行动”, 因为小数据收集是有选择的从客户标准报告与社交媒体监测中收集到的。
3. 由小到大的顺序解决问题。Bonde指出,对于还不知道如何驾驭大数据的营销人员来说,小数据的易获取性和易用性是绝好的消息。“银行、政府和大公司将继续投资大数据,但很多人会意识到他们已经拥有的手边数据的价值,并使其形象化,可操作化。那头大数据还没结婚呢,这厢小数据已经生二胎了,效益快慢高下立判。”他说, “如果你还没有开始在大数据领域投资,又担心落后的话,小数据是个很好的选择。因为你可以通过专注于手边小数据的分析,获得价值和有益的启示。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29