
经济学家为何在大数据浪潮面前如此淡定
大数据如今被各行业追捧,但是有个现象还是值得注意的——在经济学领域,关于大数据应用的文章却不多。按理说,经济学是社会科学中最“科学”的一支,又以其“帝国主义”的霸权思想全方位侵入各个社科领域,为何在大数据浪潮面前如此淡定?不冲上去做一个弄潮儿?
小编个人觉得这大概与数据的特性有关,经济学使用数据的重点在于identification,而当前的大数据因为数据生产过程不透明及样本偏差等,难以做出学界认可的结果。
不明白的话,我们来看一个研究的例子,来说明为什么是这样:
之前某公共号推送了一篇文章,讲施新政、李宏彬和吴斌珍三位老师合作撰写的American Economic Review Papers and Proceedings论文“The Retirement Consumption Puzzle in China”,实证考察了中国居民的退休消费情况。文章的背景如下:
根据平滑消费理论,人们会调整一生各阶段的消费水平使之大致相当。然而,大量文献却发现人们的消费水平会在退休后发生大幅度下降,这与平滑消费理论发生了冲突。许多学者都试图从不同角度对此进行解释,本文作者也加入了这一行列。
在介绍作者思路之前,先来思考一下,如果我们用“大数据”要怎么做?
首先搞消费研究那得找万能的淘宝和京东啊,假设我们拿到了所有淘宝、京东的数据,知道大家都买买买了什么。然而这里有个问题,要研究的是消费水平是否会在退休后大幅度下降,退休的人都用这两个平台吗?!这里面临了大数据的问题一:所有的企业的用户数据和真实的人口都存在偏差,而且往往偏差很大。就拿相对最全的银行数据来说(金融方面),覆盖的也往往是本行的用户数,选择某一银行的人可能本身就有样本偏差,而且还不一定能覆盖其它如股票、信托等金融方式。
那么我们假设所有中国人都用淘宝和京东,这样是不是就可以了呢?
也不行。
因为你不是所有东西都在这上面买,我买个包子、买根葱,总不至于也上京东吧?
那我们假设全国菜市场也都联网了,我知道你都买了多少菜,多少鱼,总行了吧?
可能还是不行。
因为我如果根本就不去买,退休后在家里自己种菜呢?自己蒸馒头呢?而且这种现象恐怕不稀少吧?这都会造成数据的系统性偏差。
让我们来看看作者们是怎么分析数据中消费品类型的影响的:
在本文作者看来,现有研究的实证分析尚存在一些不足:首先,现有研究对消费的定义并不完善。消费中有一部分是与工作相关或者可以被家庭内部生产所替代。在考察退休前后消费是否满足平滑消费理论时,应该先将这一部分剔除。然而,大多数现有研究由于数据的局限而未能这么做。其次,现有研究面临内生性问题。退休与否是一个高度内生的决策变量,不考虑退休内生性的实证考察结果很有可能存在偏误,进而也无法明确得到退休与消费之间的因果联系。
作者们在处理这一研究问题的时候还是采用了“传统数据”,中国城市家庭调查数据(China's Urban Household Survey, UHS),对消费内容进行了细致的分解,分出了工作相关消费、可被家庭生产替代的消费及其他消费。
对于内生性的问题:本文利用中国的强制退休政策,借助断点回归策略(RD)有效处理了内生性问题。中国的很多单位都实行强制退休政策(主要是政府、公共部门、国有企业、集体企业,男性60岁、女性55岁),作者基于此比较考察了退休前后年龄段人群所在家庭的消费变化情况。
作者们得出的结论是:
退休确实会使家庭的非耐用品消费显著下降21个百分点。不过这一下降主要是由工作相关开支减少、食品消费由在外进行转变为在家进行所造成的。其中后者主要是由于家庭内部食品消费价格更加低廉,而且退休群体有充足的时间在家准备食品。在剔除了这两项之后,作者发现退休并未对其他非耐用品消费造成显著影响,即平滑消费理论针对其他非耐用消费品仍然成立。
当然,要知道UHS的数据可不是想拿就能拿到的,现在经济学研究高质量数据变得非常非常重要,而且只要数据质量够好,根本不需要复杂的模型。有研究表明,经济学主流期刊上面OLS仍然是使用最多的回归方式,而不是什么DID,RD,GMM。
结论
其实经济学家对数据是非常敏锐的,早已经不局限在传统的统计年鉴、普查数据,他们扒地方志及历史文献,用气象数据、遥感数据,现在也有非常多的研究开始写爬虫抓互联网数据。所以经济学家不是不用数据,也不是不用大量的数据,而是对“大数据”的使用持审慎的态度。
本文举的例子主要是想说明数据的选择与研究问题的需求密不可分,这一点不论数据"大小"。很多时候,研究人员并不能很好地了解拿到的大数据的产生方式,及可能存在的偏差,导致使用起来会比较盲目。特别地,互联网公司的业务变化速度非常快,算法脚本经常更新,用户结构性的变化也不小,这些对于外部研究者都是很难了解的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16