
关联规则挖掘在电商、零售、大气物理、生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法。
啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书《啤酒与尿布》,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理。我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念:
TID | Items |
T1 | {牛奶,面包} |
T2 | {面包,尿布,啤酒,鸡蛋} |
T3 | {牛奶,尿布,啤酒,可乐} |
T4 | {面包,牛奶,尿布,啤酒} |
T5 | {面包,牛奶,尿布,可乐} |
表中的每一行代表一次购买清单(注意你购买十盒牛奶也只计一次,即只记录某个商品的出现与否)。数据记录的所有项的集合称为总项集,上表中的总项集S={牛奶,面包,尿布,啤酒,鸡蛋,可乐}。
一、关联规则、自信度、自持度的定义
关联规则就是有关联的规则,形式是这样定义的:两个不相交的非空集合X、Y,如果有X-->Y,就说X-->Y是一条关联规则。举个例子,在上面的表中,我们发现购买啤酒就一定会购买尿布,{啤酒}-->{尿布}就是一条关联规则。关联规则的强度用支持度(support)和自信度(confidence)来描述,
支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数。例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%。
自信度的定义:confidence(X-->Y) = |X交Y|/|X| = 集合X与集合Y中的项在一条记录中同时出现的次数/集合X出现的个数 。例如:confidence({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/啤酒出现的次数=3/3=100%;confidence({尿布}-->{啤酒}) = 啤酒和尿布同时出现的次数/尿布出现的次数 = 3/4 = 75%。
这里定义的支持度和自信度都是相对的支持度和自信度,不是绝对支持度,绝对支持度abs_support = 数据记录数N*support。
支持度和自信度越高,说明规则越强,关联规则挖掘就是挖掘出满足一定强度的规则。
二、关联规则挖掘的定义与步骤
关联规则挖掘的定义:给定一个交易数据集T,找出其中所有支持度support >= min_support、自信度confidence >= min_confidence的关联规则。
有一个简单而粗鲁的方法可以找出所需要的规则,那就是穷举项集的所有组合,并测试每个组合是否满足条件,一个元素个数为n的项集的组合个数为2^n-1(除去空集),所需要的时间复杂度明显为O(2^N),对于普通的超市,其商品的项集数也在1万以上,用指数时间复杂度的算法不能在可接受的时间内解决问题。怎样快速挖出满足条件的关联规则是关联挖掘的需要解决的主要问题。
仔细想一下,我们会发现对于{啤酒-->尿布},{尿布-->啤酒}这两个规则的支持度实际上只需要计算{尿布,啤酒}的支持度,即它们交集的支持度。于是我们把关联规则挖掘分两步进行:
1)生成频繁项集
这一阶段找出所有满足最小支持度的项集,找出的这些项集称为频繁项集。
2)生成规则
在上一步产生的频繁项集的基础上生成满足最小自信度的规则,产生的规则称为强规则。
关联规则挖掘所花费的时间主要是在生成频繁项集上,因为找出的频繁项集往往不会很多,利用频繁项集生成规则也就不会花太多的时间,而生成频繁项集需要测试很多的备选项集,如果不加优化,所需的时间是O(2^N)。
三、Apriori定律
为了减少频繁项集的生成时间,我们应该尽早的消除一些完全不可能是频繁项集的集合,Apriori的两条定律就是干这事的。
Apriori定律1):如果一个集合是频繁项集,则它的所有子集都是频繁项集。举例:假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。
Apriori定律2):如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。举例:假设集合{A}不是频繁项集,即A出现的次数小于min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。
利用这两条定律,我们抛掉很多的候选项集,Apriori算法就是利用这两个定理来实现快速挖掘频繁项集的。
四、Apriori算法
Apriori是由a priori合并而来的,它的意思是后面的是在前面的基础上推出来的,即先验推导,怎么个先验法,其实就是二级频繁项集是在一级频繁项集的基础上产生的,三级频繁项集是在二级频繁项集的基础上产生的,以此类推。
Apriori算法属于候选消除算法,是一个生成候选集、消除不满足条件的候选集、并不断循环直到不再产生候选集的过程。
上面的图演示了Apriori算法的过程,注意看由二级频繁项集生成三级候选项集时,没有{牛奶,面包,啤酒},那是因为{面包,啤酒}不是二级频繁项集,这里利用了Apriori定理。最后生成三级频繁项集后,没有更高一级的候选项集,因此整个算法结束,{牛奶,面包,尿布}是最大频繁子集。
算法的思想知道了,这里也就不上伪代码了,我认为理解了算法的思想后,子集去构思实现才能理解更深刻,这里贴一下我的关键代码:
如果想看完整的代码,可以查看我的github,数据集的格式跟本文所述的略有不通,但不影响对算法的理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28