京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Excel绘制指定区间的正态分布曲线下面积图
正态分布曲线下面积是很有实际应用价值的。在工程能力指数的评估、产品质量分析和教育评估分析方面都发挥了很大作用。
在正态分布的密度函数中有上述两个常数:算数平均数μ和标准差σ。正态分布的值有99.74%落在(μ-3σ,μ+3σ)区间内,也就是说落在以平均值为中心的左右各3个σ(共六个σ)的范围内,所谓管理学中的“三西格玛”或“六西格玛”就源于此。Excel中可以使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达正态分布,其中:x —“值”,是要求分布的随机变量数值;μ—“平均数”,是分布的算数平均数;σ—“标准差”,是分布的标准差;逻辑值—“积累与否”,是决定函数的逻辑值,其中取值为 “TRUE”(真),则返回累计分布函数;取“FALSE”(伪),则NORMDIST会返回正态分布函数的高度。如果为了绘制正态分布曲线,就要取“FALSE”。
Mly网友来信问起我在《Excel:正态分布函数曲线下的面积及其应用》中的图-3. μ=60,σ=15,在(-∞,55)的正态分布曲线二维面积图(蓝斜纹)如下图,是如何绘制的。
这篇《Excel:正态分布函数曲线下的面积及其应用》主要是谈正态分布及其曲线下面积的应用,这张图是运用的一个例子,至于图表如何作出的具体步骤,文中就未作介绍。过后,正好有一位网友MZY来信问起了有关定积分的指定区间的曲线下面积的作图,我又写了一篇《答MZY:Excel指定区间的曲线下面积》,该文只是就Y=eX的曲线谈了分几个区间的曲线下面积的作图,因为思路是一样的,就未对分段的正态分布曲线作介绍。其实把这两篇文章结合起来就可以解决类似于上图的分区间的正态分布曲线下面积的绘制。
分区间段的面积图有多种做法,一般使用覆盖法,这样对全程控制比较方便。但是要注意要先做全程的,然后从右到左,使后者逐次叠加覆盖前者得一部分,每一系列的左端点应该是重合的,只是右端点不同,否则会出错。上图是μ=60,σ=15的正态分布曲线二维面积图,看起来是对三个不同的、但相连接的区间(-∞,55],(55,65]和(65,+∞)分别着色,其实是对(-∞,55],(-∞,65]和(-∞,+∞)三个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。
首先,建立数据系列的表格,使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达区间(-∞,+∞)上的正态分布,其中:“平均数”μ=60;“标准差”σ=15;逻辑值“积累与否”取“FALSE”。A列设置随机变量数值,在A2单元格设为0、A3单元格设1,等差值为1,选中A2:A3后,一直拖到A112得出数值为110为止。在B列设置正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),使B2单元格的内容为“=NORMDIST(A2,60,15,FALSE)”,向下拖曳复制公式到B112,如表-1所示,B列的显示的是公式:
表-1
如果使B列显示的是数值,即如表-2所示:

表-2
先作系列1:
将区间(-∞,+∞)作为系列1,也就是全程,放在最下一层,
选中单元格区间A2:B112,插入二维面积图,这就绘出μ=60,σ=15,在(-∞,+∞)的正态分布曲线图,如图-1所示。可见该中间高两头低的钟形图形是以μ=60为对称轴的轴对称图形,并以横轴为渐近线:

图-1
图-1完成后,在2003版的“源数据”-“系列”中可以看到系列1的“值”和“分类(x)轴标志”设置,如图-2所示:
图-2
在2010版中点击“图表工具”-“数据”-“选择数据”,如图-2-2010-1所示:
图-2-2010-1
在“选择数据源”对话框中,可以看到系列1已设置,如图-2-2010-2所示:
图-2-2010-2
在“编辑数据系列”对话框中可以看到“系列值”中的设置,如图-2-2010-3所示:
图-2-2010-3
而“轴标签”的设置,如图-2-2010-4所示:
图-2-2010-4
后续的数据系列必须在源数据中逐步添加。
添加系列2:
在“源数据”-“系列”-“系列”中添加系列2,将区间(-∞,65]作为系列2,“值”和“分类(x)轴标志”的设置如图-3所示:
图-3
图-3中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,会弹出如图-4所示的“源数据-数值”对话框,选取系列2数据所在的单元格B2:B67,“源数据-数值”对话框会出现设置如图-4所示数据,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位到图-3。分类(x)轴标志”的设置方法也是利用右侧的拾取折叠按钮,选择的范围还是全程A2:A112.

图-4
在2010版中,类似的设置如图-4-2010-1与图-4-2010-2所示:
图-4-2010-1
图-4-2010-2
确定后,图表如图-5所示:
图-5
添加系列3:
在“源数据”-“系列”-“系列”中添加系列3,将区间(-∞,55]作为系列3,“值”和“分类(x)轴标志”的设置如图-6所示:
图-6
图-6中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,在弹出的“源数据-数值”对话框,选取系列3数据所在的单元格B2:B57,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位。分类(x)轴标志”选择的范围还是全程A2:A112。
在2010版中,类似的设置如图-6-2010-1与图-6-2010-2所示:
图-6-2010-1

图-6-2010-2
确定后,图表如图-7所示:
图-7
为了说明三个系列前后遮挡掩盖的效果,可以用三维面积图来说明。
当只有系列1时的三维图,如图-8所示:
图-8
当添加系列2后的三维图,如图-9所示:

图-9
当添加系列3后的三维图,如图-10所示:

图-10
将三个系列的三维图的三维变换角度调为0,相当于从侧面正视这个三维图,三维的遮挡掩盖效果就成了二维的分段切割效果,如图-11所示:
图-11
最后要说明的是,这种分段区间的曲线下面积图的制作是对若干个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。因此在制作中如有覆盖错误,很可能是数据系列的次序颠倒,可以在相关的数据系列次序调整的选项面板中进行调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09